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Ideals and Subrings

A subgroup of a group is a subset of the group which is a group in its own right, using the operation
it inherits from its parent group. Likewise, a subring of a ring is a subset of the ring which is a ring in its
own right, using the addition and multiplication it inherits from its parent ring.

Definition. Let R be a ring. A subring is a subset S ⊂ R such that:

(a) S is closed under addition: If a, b ∈ S, then a+ b ∈ S.

(b) The zero element of R is in S: 0 ∈ S.

(c) S is closed under additive inverses: If a ∈ S, then −a ∈ S.

(d) S is closed under multiplication: If a, b ∈ S, then ab ∈ S.

It turns out to be useful to consider certain other kinds of “subobjects” of rings: Ideals. I’ll use ideals
to construct quotient rings, which just as I used normal subgroups to construct quotient groups.

Definition. Let R be a ring. An ideal S of R is a subset S ⊂ R such that:

(a) S is closed under addition: If a, b ∈ S, then a+ b ∈ S.

(b) The zero element of R is in S: 0 ∈ S.

(c) S is closed under additive inverses: If a ∈ S, then −a ∈ S.

(d) If r ∈ R and x ∈ S, then rx ∈ S and xr ∈ S. In other words, S is closed under multiplication (on
either side) by arbitrary ring elements.

What’s the difference between a subring and an ideal? A subring must be closed under multiplication
of elements in the subring. An ideal must be closed under multiplication of an element in the ideal by any

element in the ring.
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Since the ideal definition requires more multiplicative closure than the subring definition, every ideal is
a subring. The converse is false, as I’ll show by example below.

In the course of attempting to prove Fermat’s Last Theorem, mathematicians were led to introduce
rings in which unique factorization failed — that is, it might be possible to factor a ring element into
primes in more than one way. They were led to introduce ideal numbers (essentially what are now called
ideals) in an attempt to restore unique factorization.

What I’ve defined above is usually called a two-sided ideal. If I only require that rx ∈ S for r ∈ R
and x ∈ S, I get left ideals. Likewise, if I only require that xr ∈ S for r ∈ R and x ∈ S, I get right ideals.

From now on, if I just say “ideal”, I will mean a two-sided ideal.
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If R is commutative, then rb = br, so you only need to check that one of rb, br, is in S. In the
commutative case, there’s no difference between left ideals, right ideals, and two-sided ideals.

Lemma. Let R be a ring. Then R and {0} are ideals.

Proof. R is a group under addition, and as such I’ve already proved that R (the whole group) and {0} (the
set consisting of the identity) are subgroups of R. Thus, they are both closed under addition, contain 0, and
are closed under taking additive inverses. I only have to verify the fourth ideal axiom in each case.

For R, if x ∈ R and r ∈ R, then xr, rx ∈ R, because R is closed under multiplication (being the whole
ring!). Therefore, R is an ideal.

For {0}, take 0 ∈ {0} — what other choice do you have? — and r ∈ R. Then

r · 0 = 0 ∈ {0} and 0 · r = 0 ∈ {0}.

Therefore, {0} is an ideal.

Definition. Let R be a ring. A proper ideal is an ideal other than R; a nontrivial ideal is an ideal
other than {0}.

Example. (The integers as a subset of the reals) Show that Z is a subring of R, but not an ideal.

Z is a subring of R: It contains 0, is closed under taking additive inverses, and is closed under addition
and multiplication. With regard to multiplication, note that the product of two integers is an integer.

However, Z is not an ideal in R. For example,
√
2 ∈ R and 3 ∈ Z, but

√
2 · 3 /∈ Z.

Example. (An ideal in the ring of integers) Show that the subset nZ is an ideal in Z for n ∈ Z.

We already know that nZ is a subgroup of Z under addition. So I just need to check closure under
multiplication.

Let k ∈ Z and let nx ∈ nZ, where x ∈ Z. Then

k · (nx) = n(kx) ∈ nZ.

Therefore, nZ is an ideal.

Example. (An ideal in a product ring) In the ring Z4 × Z4, consider the subset

I = {(0, 0), (1, 1), (2, 2), (3, 3)}.

Show that I is a subring, but not an ideal.

It’s easy to check that I is a subring of Z4 × Z4. First, I contains the additive identity (0, 0).
Next, a typical element of I has the form (n, n). The additive inverse is

−(n, n) = (−n,−n) = (4− n, 4− n) ∈ I.

If you add two elements of I, you get an element of I:

(a, a) + (b, b) = (a+ b, a+ b).
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(Of course, you’ll reduce a+ b mod 4, but the two components remain the same.)
Finally, if you multiply two elements of I, you get an element of I:

(a, a)(b, b) = (ab, ab).

However, I is not an ideal; for example, (2, 2) ∈ I, but

(3, 0) · (2, 2) = (2, 0) /∈ I.

In other words, I is closed under multiplication of elements inside I, but not closed under multiplication
by an element from outside I.

Definition. Let R be a commutative ring, and let a ∈ R. The principal ideal generated by a is

〈a〉 = {ra | r ∈ R}.

For example, in the ring of polynomials with real coefficients R[x], this is the principal ideal generated
by x2 + 4:

〈x2 + 4〉 = {(x2 + 4) · f(x) | f(x) ∈ R[x]}.
It’s the set consisting of all multiples of x2 + 4. For example, here are some elements of 〈x2 + 4〉:

(2x+ 5) · (x2 + 4), (−πx50 +
√
2) · (x2 + 4), 0 = 0 · (x2 + 4).

We’d better check that the principal ideal really is an ideal!

Lemma. Let R be a commutative ring, and let a ∈ R. Then 〈a〉 is a two-sided ideal in R.

Proof. First, 0 = 0 · a ∈ 〈a〉.
If ra ∈ 〈a〉, then −(ra) = (−r)a ∈ 〈a〉.
Finally, if ra, sa ∈ 〈a〉, then ra+ sa = (r + s)a ∈ 〈a〉.
Thus, 〈a〉 is an additive subgroup of R.
If ra ∈ 〈a〉 and s ∈ R, then

s(ra) = (sr)a ∈ 〈a〉 and (ra)s = (rs)a ∈ 〈a〉.

Therefore, 〈a〉 is a two-sided ideal.

Definition. Let I1, . . . , In be ideals in a ring R. The ideal sum is

n∑

k=1

Ik = {x1 + · · ·+ xn | xk ∈ Ik}.

Definition. Let I and J be ideals in a ring R. The ideal product is

IJ = {x1y1 + · · ·+ xnyn | xi ∈ I, yi ∈ J}.

Thus, IJ consists of all finite sums of products xy, x ∈ I, y ∈ J .

Proposition. Let R be a ring.

(a) Suppose R has an identity and I is an ideal. If 1 ∈ I, then I = R.
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(b) The intersection I ∩ J of (left, right, two-sided) ideals I and J is a (left, right, two-sided) ideal.

(c) If I1, . . . , In are (left, right, two-sided) ideals, the ideal sum is a (left, right, two-sided) ideal.

(d) If I and J are (left, right, two-sided) ideals, the ideal product is a (left, right, two-sided) ideal.

Proof. I’ll prove the first statement by way of example. Let I be an ideal in a ring with 1. I ⊂ R, so I need
to prove R ⊂ I. Let r ∈ R. Now 1 ∈ I, so by the definition of an ideal, r = r · 1 ∈ I. Therefore, R ⊂ I, so
R = I.
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