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Integral Domains and Fields

Definition. (a) Let R be a commutative ring. A zero divisor is a nonzero element a ∈ R such that ab = 0
for some nonzero b ∈ R.
(b) A commutative ring with 1 having no zero divisors is an integral domain.

The most familiar integral domain is Z. It’s a commutative ring with identity. If a, b ∈ Z and ab = 0,
then at least one of a or b is 0.

Definition. (a) Let R be a ring with identity, and let a ∈ R. A multiplicative inverse of a is an element
a−1 ∈ R such that

a · a−1 = 1 and a−1 · a = 1.

An element which has a multiplicative inverse is called a unit.

Definition. (a) A ring with identity in which every nonzero element has a multiplicative inverse is called a
division ring.

(b) A commutative ring with identity in which every nonzero element has a multiplicative inverse is called a
field.

Q, R, and C are all fields. H is an example of a division ring which is not a field — it isn’t commutative,
since (for example) ij = k but ji = −k.

Example. (Units and zero divisors in the integers mod n) (a) What are the units in Zn?

(b) List the units and zero divisors in Z12

(a) The units in Zn are the elements of Un; that is, the elements of Zn which are relatively prime to n.

Thus, in Z12, the elements 1, 5, 7, and 11 are units. For example, 7−1 = 7.
The zero divisors in Z12 are 2, 3, 4, 6, 8, 9, and 10. For example 2 · 6 = 0, even though 2 and 6 are

nonzero.

Example. (The units in a matrix ring) What are the units in M(2,R)?

The units in M(2,R) are the invertible matrices — i.e. the elements of GL(2,R).

Example. (A ring of functions which is not a domain) Show that C[0, 1] is not an integral domain.

Let

f(x) =











0 if 0 ≤ x ≤ 1

2

x− 1

2
if

1

2
< x ≤ 1

g(x) =











1

2
− x if 0 ≤ x ≤ 1

2

0 if
1

2
< x ≤ 1

Then f, g 6= 0, but fg = 0.
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Lemma. (Cancellation) Let R be a commutative ring with 1. Then R is an integral domain if and only
if for all r, s, t ∈ R, rs = rt and r 6= 0 implies s = t.

In other words, you can “cancel” nonzero factors in an integral domain. Note that this is not the same
as division, which is multiplication by a multiplicative inverse.

Proof. Suppose R is a domain. Let r, s, t ∈ R, where r 6= 0, and suppose rs = rt. Then rs − rt = 0, so
r(s− t) = 0. Since r 6= 0 and since R has no zero divisors, s− t = 0. Therefore, s = t.

Conversely, suppose for all r, s, t ∈ R, rs = rt and r 6= 0 implies s = t. I will show that R has no zero
divisors. Suppose ab = 0, where a 6= 0. Now ab = 0 = a · 0, and by cancellation, b = 0. This shows that R
has no zero divisors, so R is a domain.

Example. (Domains and solving by factoring) Show that x2 + 3x− 4 ∈ Z12[x] has 4 roots.

x 0 1 2 3 4 5

x2 + 3x− 4 (mod 12) 8 0 6 2 0 0

x 6 7 8 9 10 11

x2 + 3x− 4 (mod 12) 2 6 0 8 6 6

Thus, a polynomial of degree n can have more than n roots in a ring. The problem is that Z12 is not a
domain: (x+ 4)(x− 1) = 0 does not imply one of the factors must be zero.

Remark. Here is a picture which shows how the various types of rings are related:

ring
ւ ց

commutative ring
↓ division ring

domain
ց ւ

field

Thus, a field is a special case of a division ring, just as a division ring is a special case of a ring.
The objects of mathematics are primarily built up from sets by adding axioms to make more complicated

structures. For instance, a group is a set with one binary operation satisfying certain axioms. A ring is a
set with two binary operations, satisfying certain axioms. You get special kinds of rings by adding axioms
to the basic ring definition.

There are many advantages to doing things this way. For one, if you prove something about a simple
structure, you know the result will be true about more complicated structures which are built from the
simple structure. For another, by using the smallest number of axioms to prove results, you get a deeper
understanding of why the result is true.

Lemma. Fields are integral domains.

Proof. Let F be a field. I must show that F has no zero divisors. Suppose ab = 0 and a 6= 0. Then a has
an inverse a−1, so a−1ab = a−1 · 0, or b = 0. Therefore, F has no zero divisors, and F is a domain.

Lemma. If R is a field, the only ideals are {0} and R.

Proof. Let R be a field, and let I ⊂ R be an ideal. Assume I 6= {0}, and find x 6= 0 in I. Since R is a field,
x is invertible; since I is an ideal, 1 = x−1 · x ∈ I. Therefore, I = R.
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Example. (A field which extends the rationals) Consider

Q[
√
2] = {a+ b

√
2 | a, b ∈ Q}.

Use the operations inherited from the reals. Show that every nonzero element has a multiplicative
inverse (so Q[

√
2] is a field).

This is clearly a commutative ring. To show that it’s a field, suppose a + b
√
2 6= 0. Then multiplying

top and bottom by the conjugate, I have

1

a+ b
√
2
=

a− b
√
2

a2 − 2b2
.

I must show that a2 − 2b2 6= 0.
If a = 0 and b 6= 0 or if a 6= 0 and b = 0, then a2−2b2 6= 0. Since a+ b

√
2 6= 0, the only other possibility

is a, b 6= 0.
Thus, a2 = 2b2 with a, b 6= 0. Clearing denominators if necessary, I may assume that a and b are integers

— in fact, positive integers, thanks to the squares. Now 2 divides 2b2, so 2 | a2. This forces 2 | a, so a = 2c
for some integer c. Plugging in gives 4c2 = 2b2, or 2c2 = b2.

Repeat the argument: 2 | b2, so 2 | b, so b = 2d. Plugging in gives 2c2 = 4d2, or c2 = 2d2.
I can continue this process indefinitely. Notice that a > c > . . . and b > d > . . .. This yields infinite

descending sequences of positive integers, contradicting well-ordering. Therefore, a2 − 2b2 6= 0. (This is
called an argument by infinite descent.)

It follows that every nonzero element of Q[
√
2] is invertible, so Q[

√
2] is a field.

Proposition. A finite integral domain is a field.

Proof. Let R be a finite domain. Say
R = {r1, r2, . . . , rn}.

I must show that nonzero elements are invertible. Let r ∈ R, r 6= 0.
Consider the products rr1, rr2, . . . , rrn. If rri = rrj , then ri = rj by cancellation. Therefore, the rri

are distinct. Since there are n of them, they must be exactly all the elements of R:

R = {rr1, rr2, . . . , rrn}.

Then 1 ∈ R equals rri for some i, so r is invertible.

For the proposition that follows, I need the following result on greatest common divisors.

Proposition. m ∈ Zn is a zero divisor if and only if (m,n) 6= 1.

Proof. First, I’ll show that if (m,n) = 1, then m is not a zero divisor. Suppose (m,n) = 1, so am+ bn = 1
for some a, b ∈ Z. Reducing the equation mod n, a′m = 1 for some a′ ∈ Zn, where a = a′ mod n.

Now suppose k ∈ Zn and mk = 0. Then

a′m = 1

a′mk = k

0 = k

Therefore, m is not a zero divisor.
Conversely, suppose that (m,n) = k > 1. Say n = ka, where 1 < a < n. In particular, I may regard a

as a nonzero element of Zn.

The order of m in Zn is
n

(m,n)
=

n

k
= a. Thus, ma = 0 in Zn, and m is a zero divisor.
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Example. (Zero divisors in the integers mod n) (a) Find the zero divisors in Z15.

(b) Find the zero divisors in Z7.

(a) The zero divisors are those elements in {1, 2, . . . , 14} which are not relatively prime to 15:

3, 5, 6, 9, 10, 12.

For example, 5 · 12 = 0 ∈ Z15 shows directly that 5 and 12 are zero divisors.

(b) Since 7 is prime, all the elements in {1, 2, 3, 4, 5, 6} are relatively prime to 7. There are no zero divisors
in Z7. In fact, Z7 is an integral domain; since it’s finite, it’s also a field by an earlier result.

Example. List the units and zero divisors in Z4 × Z2.

The units are (1, 1) and (3, 1):

(1, 1) · (1, 1) = (1, 1) and (3, 1) · (3, 1) = (1, 1).

The zero divisors are

(1, 0), (2, 0), (3, 0), (2, 1), (0, 1).

To see this, note that
(1, 0) · (0, 1) = (0, 0)

(2, 0) · (0, 1) = (0, 0)

(3, 0) · (0, 1) = (0, 0)

(2, 1) · (2, 0) = (0, 0)

(0, 1) · (1, 0) = (0, 0)

Proposition. Zn is a field if and only if n is prime.

Proof. If n is composite, I may find a, b such that 1 < a, b < n and ab = n. Regarding a and b as elements
of Zn, I obtain ab = 0 in Zn. Therefore, Zn has zero divisors, and is not a domain. Since fields are domains,
Zn is not a field.

Suppose n is prime. The nonzero elements 1, . . . , n − 1 are all relatively prime to n. Hence, they are
not zero divisors in Zn, by the preceding result. Therefore, Zn is a domain. Since it’s finite, it’s a field.

The fields Zp for p prime are examples of fields of finite characteristic.

Definition. The characteristic of a ring R is the smallest positive integer n such that n · r = 0 for all
r ∈ R. If there is no such integer, the ring has characteristic 0. Denote the characteristic of R by charR.

Z, R, and C are fields of characteristic 0. If p is prime, Zp is a field of characteristic p.

Proposition. If F is a field of characteristic n > 0, then n is prime.

Proof. If n is composite, write n = rs, where 1 < r, s < n. Then

(r · 1)(s · 1) = rs · 1 = n · 1 = 0.
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But r · 1 6= 0 and s · 1 6= 0 since r, s < n. Therefore, F has zero divisors, contradicting the fact that
fields are domains.

Note, however, that Zp for p prime is not the only field of characteristic p. In fact, for each n > 0, there
is a unique field F of characteristic p such that |F | = pn.

Proposition. Let R be a ring with identity.

(a) If there is no positive integer n such that n · 1 = 0, then charR = 0.

(b) If n · 1 = 0 for some positive integer n, then the smallest positive integer for which this is true is charR.

Proof. Suppose there is no positive integer n such that n ·1 = 0. If n is a positive integer such that n · r = 0
for all r ∈ R, then in particular n · 1 = 0, which is a contradiction. Therefore, there is no positive integer n
such that n · r = 0 for all r ∈ R, and by definition this means that charR = 0.

Suppose n · 1 = 0 for some positive integer n. By Well-Ordering, there is a smallest positive integer m
such that m · 1 = 0. If r ∈ R, then

(m · 1) · r = 0 · r, or m · (1 · r) = 0, so m · r = 0.

This means that charR 6= 0, and in fact, charR ≤ m. But if charR = k < m, then k · 1 = 0, which
contradicts the assumption that m is the smallest integer such that m · 1 = 0. Therefore, charR = m.

Definition. An integral domain R is called a principal ideal domain (or PID for short) if every ideal in
R is principal.

The integers Z and polynomial rings over fields are examples of principal ideal domains.
Let’s see how this works for a polynomial ring. Consider the set

I = {a(x) · (x2 − 4) + b(x) · (x2 − x− 2) | a(x), b(x) ∈ Q[x]}.

It’s straightforward to show that I is an ideal. I’ll show that in fact I is principal — that is, it actually
consists of all multiples of a mystery polynomial f(x).

What could f(x) be? Well, if I take a(x) = 1 and b(x) = 0, I see that x2 − 4 is in I. Likewise, a(x) = 0
and b(x) = 1 shows that x2 − x− 2 is in I. So if everything in I is a multiple of f , then in particular these
two polynomials must be multiples of f — or what is the same, f divides x2 − 4 and x2 − x− 2.

Note that
x2 − 4 = (x− 2)(x+ 2) and x2 − x− 2 = (x− 2)(x+ 1).

Now I can see something which divides x2 − 4 and x2 − x − 2, namely x − 2. I’m going to guess that
f(x) = x− 2 is my mystery polynomial.

In the first place,

a(x) · (x2 − 4) + b(x) · (x2 − x− 2) = a(x) · (x− 2)(x+ 2) + b(x) · (x− 2)(x+ 1).

So x− 2 divides everything in I.
Now I want to show that anything divisible by x−2 is in I. So suppose x−2 | g(x), or g(x) = (x−2)h(x)

for some h(x). Why is g(x) ∈ I?
The key is to observe that x− 2 is the greatest common divisor of x2 − 4 and x2 − x− 2. Thus, I can

write x− 2 as a linear combination of x2 − 4 and x2 − x− 2. Here’s one:

x− 2 = (x2 − 4)− (x2 − x− 2).
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Hence,
g(x) =

[

(x2 − 4)− (x2 − x− 2)
]

h(x) = h(x) · (x2 − 4)− h(x) · (x2 − x− 2).

The last expression is in I, since it’s a linear combination of x2 − 4 and x2 − x − 2. So g(x) ∈ I, as I
wanted to show.

Therefore, I is principal:
I = 〈x− 2〉.

Now you can see how to do this in a more general case. Suppose you have the ideal

{a1(x)f1(x) + · · ·+ an(x)fn(x) | a1(x), . . . , an(x) ∈ F [x]}.

It will be generated by the single element (f1(x), . . . , fn(x)), the greatest common divisor of the f ’s.

Example. (Finding a generator for a principal ideal) Consider the ring Z[x] of polynomials with
integer coefficients. Show that the following ideal is not principal:

I = 〈x, x+ 2〉 = {a(x)(x+ 2) + b(x)x | a(x), b(x) ∈ Z[x]}.

I is an ideal in Z[x]. It consists of all linear combinations (with polynomial coefficients) of x+2 and x.
For example, the following polynomials are elements of I:

(x2 + 5x+ 1)(x+ 2) + (x117 − 89)(x), (−2x+ 3)(x+ 2) + 47x, (1)(x+ 2) + (0)(x), (0)(x+ 2) + (1)(x).

I’ll let you verify that I satisfies the axioms for an ideal. Taking this for granted, I’ll show that I is not
principal — that is, I does not consist of multiples of a single polynomial p(x).

Suppose on the contrary that every element of I is a multiple of a polynomial p(x) ∈ Z[x]. Look at the
last two sample elements above;

x+ 2 = (1)(x+ 2) + (0)(x) ∈ I and (0)(x+ 2) + (1)(x) = x ∈ I.

Since I is an ideal, their difference (x+ 2)− x = 2 is also an element of I.
By assumption, every element of I is a multiple of p(x), so 2 is a multiple of p(x). Thus, 2 = a(x)p(x)

for some polynomial a(x).
However, the only integer polynomials which divide the polynomial 2 are ±1 and ±2. So p(x) is −1, 1,

−2, or 2.
x is also an element of I, so x is a multiple of p(x). Of the possibilities −1, 1, −2, or 2, only −1 and 1

divide x. So p(x) = 1 or p(x) = −1.
However, remember that elements of I have the form a(x)(x+ 2) + b(x)(x). The constant term of this

polynomial is the constant term of a(x) times 2 — that is, the constant term must be divisible by 2. Since
neither 1 nor −1 are divisible by 2, it follows that p(x) can’t be 1 or −1.

This contradiction shows that there is no such p(x): The ideal I is not principal.
Consequently, Z[x] is not a principal ideal domain.
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