## Matrix Groups

Many groups have matrices as their elements. The operation is usually either matrix addition or matrix multiplication.

Example. Let $G$ denote the set of all $2 \times 3$ matrices with real entries. (Remember that " $2 \times 3$ " means the matrices have 2 rows and 3 columns.) Here are some elements of $G$ :

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
1.17 & -2.46 & \pi \sqrt{3} \\
147.2 & \frac{22}{7} & 0
\end{array}\right]
$$

Show that $G$ is a group under matrix addition.
If you add two $2 \times 3$ matrices with real entries, you obtain another $2 \times 3$ matrix with real entries:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]+\left[\begin{array}{lll}
u & v & w \\
x & y & z
\end{array}\right]=\left[\begin{array}{lll}
a+u & b+v & c+w \\
d+x & e+y & f+z
\end{array}\right]
$$

That is, addition yields a binary operation on the set.
You should know from linear algebra that matrix addition is associative.
The identity element is the $2 \times 3$ zero matrix:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \quad\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

The inverse of a $2 \times 3$ matrix under this operation is the matrix obtained by negating the entries of the original matrix:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]+\left[\begin{array}{lll}
-a & -b & -c \\
-d & -e & -f
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
-a & -b & -c \\
-d & -e & -f
\end{array}\right]+\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Notice that I don't get a group if I try to apply matrix addition to the set of all matrices with real entries. This does not define a binary operation on the set, because matrices of different dimensions can't be added.

In general, the set of $m \times n$ matrices with real entries - or entries in $\mathbb{Z}, \mathbb{Q}, \mathbb{C}$, or $\mathbb{Z}_{n}$ for $n \geq 2$ form a group under matrix addition.

As a special case, the $n \times n$ matrices with real entries forms a group under matrix addition. This group is denoted $M(n, \mathbb{R})$. As you might guess, $M(n, \mathbb{Q})$ denotes the group of $n \times n$ matrices with rational entries (and so on). $\quad \square$

Example. Let $G$ be the group of $3 \times 4$ matrices with entries in $\mathbb{Z}_{3}$ under matrix addition.
(a) What is the order of $G$ ?
(b) Find the inverse of $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 2 & 1\end{array}\right]$ in $G$.
(a) A $3 \times 4$ matrix has $3 \cdot 4=12$ entries. Each entry can be any one of the 3 elements of $\mathbb{Z}_{3}$. Therefore, there are $3^{12}=531441$ elements. $\quad \square$
(b)

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]+\left[\begin{array}{lll}
2 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence, the inverse is $\left[\begin{array}{lll}2 & 2 & 1 \\ 0 & 1 & 2\end{array}\right] . \square$

Example. Let

$$
G=\left\{\left.\left[\begin{array}{ll}
0 & x \\
0 & y
\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}
$$

In words, $G$ is the set of $2 \times 2$ matrices with real entries having zeros in the first column. Show that $G$ is a group under matrix addition.

First,

$$
\left[\begin{array}{ll}
0 & x_{1} \\
0 & y_{1}
\end{array}\right]+\left[\begin{array}{ll}
0 & x_{2} \\
0 & y_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & x_{1}+x_{2} \\
0 & y_{1}+y_{2}
\end{array}\right] \in G
$$

That is, if you add two elements of $G$, you get another element of $G$. Hence, matrix addition gives a binary operation on the set $G$.

From linear algebra, you know that matrix addition is associative.
The zero matrix $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is the identity under matrix addition; it's an element of $G$, since its first column is all-zero.

Finally, the additive inverse of an element $\left[\begin{array}{ll}0 & x \\ 0 & y\end{array}\right] \in G$ is $\left[\begin{array}{ll}0 & -x \\ 0 & -y\end{array}\right]$, which is also an element of $G$. Thus, every element of $G$ has an inverse.

All the axioms for a group have been verified, so $G$ is a group under matrix addition.

Example. Consider the set of matrices

$$
G=\left\{\left.\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] \right\rvert\, x \in \mathbb{R}, \quad x \geq 0\right\} .
$$

(Notice that $x$ must be nonnegative). Is $G$ a group under matrix multiplication?
First, suppose that $x, y \in \mathbb{R}, x, y \geq 0$. Then

$$
\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & x+y \\
0 & 1
\end{array}\right] .
$$

Now $x+y \geq 0$, so $\left[\begin{array}{cc}1 & x+y \\ 0 & 1\end{array}\right] \in G$. Therefore, matrix multiplication gives a binary operation on $G$.
I'll take for granted the fact that matrix multiplication is associative.
The identity for multiplication is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, and this is an element of $G$.
However, not all elements of $G$ have inverses. To give a specific counterexample, suppose that for $x \geq 0$

$$
\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Then

$$
\left[\begin{array}{cc}
1 & x+2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Hence, $x+2=0$ and $x=-2$. This contradicts $x \geq 0$. Hence, the element $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ of $G$ does not have an inverse.

Therefore, $G$ is not a group under matrix multiplication.

Example. $G L(n, \mathbb{R})$ denotes the set of invertible $n \times n$ matrices with real entries, the general linear group. Show that $G L(n, \mathbb{R})$ is a group under matrix multiplication.

First, if $A, B \in G L(n, \mathbb{R})$, I know from linear algebra that $\operatorname{det} A \neq 0$ and $\operatorname{det} B \neq 0$. Then

$$
\operatorname{det}(A B)=(\operatorname{det} A) \cdot(\operatorname{det} B) \neq 0
$$

Hence, so $A B \in G L(n, \mathbb{R})$. This proves that $G L(n, \mathbb{R})$ is closed under matrix multiplication. I will take it as known from linear algebra that matrix multiplication is associative.
The identity matrix is the $n \times n$ matrix

$$
I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

It is the identity for matrix multiplication: $A I=A=I A$ for all $A \in G L(n, \mathbb{R})$.
Finally, since $G L(n, \mathbb{R})$ is the set of invertible $n \times n$ matrices, every element of $G L(n, \mathbb{R})$ has an inverse under matrix multiplication.

Example. $G L\left(2, \mathbb{Z}_{3}\right)$ denotes the set of $2 \times 2$ invertible matrices with entries in $\mathbb{Z}_{3}$. The operation is matrix multiplication - but note that all the arithmetic is performed in $\mathbb{Z}_{3}$.

For example,

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]
$$

The proof that $G L\left(2, \mathbb{Z}_{3}\right)$ is a group under matrix multiplication follows the proof in the last example. (In fact, the same thing works with any commutative ring in place of $\mathbb{R}$ or $\mathbb{Z}_{3}$; commutative rings will be discussed later.)
(a) What is the order of $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ ?
(b) Find the inverse of $\left[\begin{array}{ll}2 & 1 \\ 2 & 2\end{array}\right]$.
(a) Notice that

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{3}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Therefore, $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ has order 3 in $G L\left(2, \mathbb{Z}_{3}\right)$.
(b) Recall the formula for the inverse of a $2 \times 2$ matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

The formula works in this situation, but you have to interpret the fraction as a multiplicative inverse:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=(a d-b c)^{-1}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Thus,

$$
\left[\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right]^{-1}=\left(2^{-1}\right)\left[\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right]=2 \operatorname{cdot}\left[\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]
$$

On the other hand, the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ is not an element of $G L\left(2, \mathbb{Z}_{3}\right)$. It has determinant $2 \cdot 2-1 \cdot 1=0$, so it's not invertible.

Example. Show that the following set is a subgroup of $G L(2, \mathbb{R})$ :

$$
S L(2, \mathbb{R})=\{A \in G L(2, \mathbb{R}) \mid \operatorname{det} A=1\}
$$

Suppose $A, B \in S L(2, \mathbb{R})$. Then

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)=1 \cdot 1=1
$$

Hence, $A B \in S L(2, \mathbb{R})$.
Since $\operatorname{det} I=1$, the identity matrix is in $S L(2, \mathbb{R})$.
Finally, if $A \in S L(2, \mathbb{R})$, then $A A^{-1}=I$ implies that

$$
(\operatorname{det} A)\left(\operatorname{det} A^{-1}\right)=\operatorname{det} I=1
$$

But $\operatorname{det} A=1$, so $\operatorname{det} A^{-1}=1$, and hence $A^{-1} \in S L(2, \mathbb{R})$.
Therefore, $S L(2, \mathbb{R})$ is a subgroup of $G L(2, \mathbb{R})$. $\quad \square$

