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Normal Subgroups and Quotient Groups

Under what conditions will the set of cosets form a group? That is, under what conditions will coset
addition or multiplication be well-defined?

If H is a subgroup of a group G, I’d like to multiply two cosets of H this way:

aH · bH = (ab)H.

Here’s the problem. A coset like aH can be represented by different elements: That is, I can have
aH = a′H where a 6= a′. Remember that a coset aH is a set of elements, not a single element. For example,
if you consider cosets of the subgroup 2Z in Z,

1 + 2Z = 13 + 2Z.

Both of these sets consist of all the odd integers, even though 1 6= 13.
So in writing aH · bH = (ab)H, I should be able to replace aH with a′H, since they’re equal. Then I’d

get
a′H · bH = (a′b)H.

I should have (ab)H = (a′b)H, because the two cosets I multiplied were the same in both cases. But how
do I know this will work? For that matter, what if I replace bH with b′H, using a different representative
for the second coset?

It turns out that this doesn’t work in general: I need to have a condition on the subgroup H.

Definition. A subgroup H < G is normal if

gHg−1 ⊂ H for all g ∈ G.

The notation H ⊳ G means that H is a normal subgroup of G.

Remark. (a) Since the statement runs over all g ∈ G, I can replace “g” in the definition with “g−1”, because
every g ∈ G is the inverse of some element, namely g−1). Thus, I could just as well say “g−1Hg ⊂ H”.

(b) As usual, to check the set inclusion gHg−1 ⊂ H, you can verify that it holds for elements: Let h ∈ H
and g ∈ G, and show that ghg−1 ∈ H.

(c) For a fixed g ∈ G, I have gHg−1 ⊂ H. But I also have

g−1Hg ⊂ H

g(g−1Hg)g−1 ⊂ gHg−1

H ⊂ gHg−1

Hence, gHg−1 = H. So I actually have equality, not just subset inclusion. If you’re showing a subgroup
is normal, you are better off doing less work and just proving inclusion, as in the definition: You get equality
for free.

The next two results give some easy examples of normal subgroups.

Proposition. Let G be a group. Then {1} and G are normal subgroups of G.

Proof. To show that {1} is normal, let g ∈ G. The only element of {1} is 1, and g · 1 · g−1 = 1 ∈ {1}.
Therefore, {1} is normal.

To show that G is normal, let g ∈ G and let h ∈ G. Then ghg−1 ∈ G, because g, h, and g−1 are all in
G, and G must be closed under its operation.
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Proposition. If G is abelian, every subgroup is normal.

Proof. If g ∈ G, then gHg−1 = Hgg−1 = H.

Example. (Showing a subgroup is not normal) Show that the subgroup {id, (1 3)} of S3 is not normal.

Here’s the multiplication table for S3, the group of permutations of {1, 2, 3}.

id (1 2 3) (1 3 2) (2 3) (1 3) (1 2)

id id (1 2 3) (1 3 2) (2 3) (1 3) (1 2)

(1 2 3) (1 2 3) (1 3 2) id (1 2) (2 3) (1 3)

(1 3 2) (1 3 2) id (1 2 3) (1 3) (1 2) (2 3)

(2 3) (2 3) (1 3) (1 2) id (1 2 3) (1 3 2)

(1 3) (1 3) (1 2) (2 3) (1 3 2) id (1 2 3)

(1 2) (1 2) (2 3) (1 3) (1 2 3) (1 3 2) id

I have to find an element g ∈ S3 such that

g{id, (1 3)}g−1 6⊂ {id, (1 3)}.

There are several possibilities. For example,

(1 2){id, (1 3)}(1 2)−1 = (1 2){id, (1 3)}(1 2) = {(1 2)id(1 2), (1 2)(1 3)(1 2)} = {id, (2 3)}.

Since {id, (2 3)} 6⊂ {id, (1 3)}, the subgroup {id, (1 3)} is not normal in S3.

Example. (A normal subgroup of the quaternions) Show that the subgroup {1,−1, i,−i} of the group
of quaternions is normal.

Here’s the multiplication table for the group of the quaternions:

1 −1 i −i j −j k −k

1 1 −1 i −i j −j k −k

−1 −1 1 −i i −j j −k k

i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j

j j −j −k k −1 1 i −i

−j −j j k −k 1 −1 −i i

k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

To show that the subgroup is normal, I have to compute g{1,−1, i,−i}g−1 for each element g in the
group and show that I always get the subgroup {1,−1, i,−i}.

It’s a bit tedious to do this for all the elements, so I’ll just do the computation for one of them by way
of example.

Take g = j. Then g−1 = −j (since j(−j) = 1), so

j{1,−1, i,−i}j−1 = j{1,−1, i,−i}(−j) = {j · 1 · (−j), j · (−1) · (−j), j · i · (−j), j · (−i) · (−j)} =
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{1,−1, (−k)(−j), k(−j)} = {1,−1,−i, i}.

This is the same set as the original subgroup, so the verification worked with this element.
If I do the same computation with the other elements in Q, I’ll always get the original subgroup back.

Therefore, {1,−1, i,−i} is normal.

As this example indicates, it is generally infeasible to show a subgroup is normal by checking the
definition for all the elements in the group!

Here’s another special case where subgroups satisfying a certain condition are normal.

Proposition. Let H be a subgroup of G. If (G : H) = 2, then H is normal.

Proof. Since (G : H) = 2, I know that H has two left cosets and two right cosets. One coset is always H
itself. Take g /∈ H. Then gH is the other left coset, Hg is the other right coset, and

H ∪ gH = G = H ∪Hg.

But these are disjoint unions, so gH = Hg, and therefore gHg−1 = H. This equation holds for any g in
the coset gH. The equation clearly holds for any element of the trivial coset H. Hence, the equation holds
for all elements of G, and H is normal.

Example. Show that the alternating group An is a normal subgroup of Sn.

The even permutations make up half of Sn, so (Sn : An) = 2. Therefore, An is normal.

Example. (Checking normality in a product) Let G and H be groups. Let

G× {1} = {(g, 1) | g ∈ G}.

Prove that G× {1} is a normal subgroup of the product G×H.

First, I’ll show that it’s a subgroup.
Let (g1, 1), (g2, 1) ∈ G× {1}, where g1, g2 ∈ G. Then

(g1, 1) · (g2, 1) = (g1g2, 1) ∈ G× {1}.

Therefore, G× {1} is closed under products.
The identity (1, 1) is in G× {1}.
If (g, 1) ∈ G× {1}, the inverse is (g, 1)−1 = (g−1, 1), which is in G× {1}.
Therefore, G× {1} is a subgroup.
To show that G× {1} is normal, let (a, b) ∈ G×H, where a ∈ G and b ∈ H. I must show that

(a, b)(G× {1})(a, b)−1 ⊂ G× {1}.

I can show one set is a subset of another by showing that an element of the first is an element of the
second. An element of (a, b)(G× {1})(a, b)−1 looks like (a, b)(g, 1)(a, b)−1, where (g, 1) ∈ G× {1}. Now

(a, b)(g, 1)(a, b)−1 = (a, b)(g, 1)(a−1, b−1) = (aga−1, b(1)b−1) = (aga−1, 1).

aga−1 ∈ G, since a, g ∈ G. Therefore, (a, b)(g, 1)(a, b)−1 ∈ G × {1}. This proves that (a, b)(G ×
{1})(a, b)−1 ⊂ G× {1}. Therefore, G× {1} is normal.
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Now I need to show that the condition of normality allows me to turn the set of cosets of a subgroup
into a quotient group under coset multiplication or addition. I need a few preliminary results on cosets first.

Theorem. Let G be a group, and let H be a subgroup of G. The following statements are equivalent:

(a) a and b are elements of the same coset of H.

(b) a H = b H.

(c) b−1a ∈ H.

Proof. To show that several statements are equivalent, I must show that any one of them follows from
any other. To do this efficiently, I’ll show that statement (a) implies statement (b), statement (b) implies
statement (c), and statement (c) implies statement (a).

((a) → (b)) Suppose a and b are elements of the same coset gH of H. Since a ∈ aH ∩ gH, and since cosets
are either disjoint or identical, aH = gH. Likewise, b ∈ bH ∩ gH implies bH = gH. Therefore, aH = bH.

((b) → (c)) Suppose aH = bH. Since 1 ∈ H, it follows that a = a · 1 ∈ aH = bH. Therefore, a = bh for
some h ∈ H. Hence, b−1a = h ∈ H.

((c) → (a)) Suppose b−1a = h ∈ H. Then b−1aH = hH = H, so aH = bH. Therefore, a and b are elements
of the same coset of H, namely aH = bH.

Corollary. aH = H if and only if a ∈ H.

Proof. The equivalence of the second and third conditions says that aH = bH if and only if b−1a ∈ H.
Taking b = 1, this says that aH = H if and only if a ∈ H, which is what I wanted to prove.

Now I’ll show that the definition of normality does what I wanted it to.

Theorem. Let G be a group, H < G. The following statements are equivalent:

(a) H ⊳ G

(b) For all g ∈ G, gH = Hg. (Thus, every left coset is a right coset and every right coset is a left coset.)

(c) Coset multiplication is well-defined.

By (c), I mean that if a1H = a2H and b1H = b2H, then a1b1H = a2b2H. Once I know that multipli-
cation is well-defined, I can define multiplication of cosets by (aH)(bH) = (ab)H.

Proof. ((a) → (b)) If H ⊳ G and g ∈ G, then gHg−1 = H, so gHg−1g = Hg, or gH = Hg.

((b) → (c)) Suppose gH = Hg for all g ∈ G. Suppose

a1H = a2H and b1H = b2H.

Then

a1b1H = a1b2H = a1Hb2 = a2Hb2 = a2b2H.

((c) → (a)) Suppose coset multiplication is well defined. I want to show H ⊳ G. Let g ∈ G. I will show
gHg−1 ⊂ H.

Let h ∈ H. I will show ghg−1 ∈ H.
By an earlier result, hH = 1H, and surely gH = gH, so (since coset multiplication is well-defined)

(gH)(hH) = (gH)(1H)

(gh)H = gH
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And since g−1H = g−1H,
[(gh)H](g−1H) = (gH)(g−1H)

(ghg−1)H = (gg−1)H

(ghg−1)H = H

An earlier result shows that this implies ghg−1 ∈ H. Therefore, H ⊳ G.

The point of all this was to make the set of cosets G/H into a group via coset multiplication or addition.

Theorem. If H ⊳ G, the set of left cosets G/H becomes a group under coset multiplication.

Proof. I’ll check that axioms. For associativity, note that

(aH · bH) · cH = (ab)H · cH = (abc)H and aH · (bH · cH) = aH · (bc)H = (abc)H.

I have
1H · aH = aH = aH · 1H for all a ∈ G.

Hence, H = 1H is the identity for coset multiplication.
Finally

aH · a−1H = 1H = a−1H · aH for all a ∈ G.

Therefore, (aH)−1 = a−1H, and every coset has an inverse.

Definition. Let G be a group, and let H ⊳ G. The set G/H of left cosets under coset multiplication is the
quotient group (or factor group) of G by H.

Because coset multiplication (or addition) is independent of the choice of representatives, you do compu-
tations in quotient groups by doing the corresponding computations on coset representatives. The following
examples illustrate this idea.

Example. (Adding cosets) Let G = Z8 = {0, 1, 2, 3, 4, 5, 6, 7} and let H be the subgroup {0, 4}.

(a) List the cosets of {0, 4}.

(b) Construct the addition table for the quotient group
Z8

{0, 4}
using coset addition as the operation.

(c) Identify the quotient group as a familiar group.

(a) The cosets of H are

{0, 4}, 1 + {0, 4} = {1, 5}, 2 + {0, 4} = {2, 6}, 3 + {0, 4} = {3, 7}.

(b) Make the set of cosets
Z8

{0, 4}
into a group by using coset addition. This means that to add two cosets

you add their representatives, then take the coset containing the sum as the sum of the cosets. Here’s the
addition table:

+ {0, 4} {1, 5} {2, 6} {3, 7}

{0, 4} {0, 4} {1, 5} {2, 6} {3, 7}

{1, 5} {1, 5} {2, 6} {3, 7} {0, 4}

{2, 6} {2, 6} {3, 7} {0, 4} {1, 5}

{3, 7} {3, 7} {0, 4} {1, 5} {2, 6}
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To see how the table was constructed, consider the entry

{2, 6}+ {3, 7} = {1, 5}.

Use representatives for the cosets:

{2, 6} = 2 + {0, 4} and {3, 7} = 3 + {0, 4}.

You add cosets by adding their representatives — in this case, 2 and 3 — and attaching the sum to the
subgroup — in this case, {0, 4}:

{2, 6}+ {3, 7} = (2 + {0, 4}) + (3 + {0, 4}) = (2 + 3) + {0, 4} = 5 + {0, 4} = {1, 5}.

You can also use individual elements. Take an element from {2, 6} and an element from {3, 7} and add
them. Find the coset that contains the sum. That coset is the sum of the cosets.

For example, if I use 6 from {2, 6} and 3 from {3, 7}, I get 6 + 3 = 1, which is in {1, 5}. Therefore,
{2, 6}+ {3, 7} = {1, 5}.

What happens if you choose different elements? Take 2 from {2, 6} and 7 from {3, 7}. Then 2 + 7 = 1,
which is in {1, 5} again. Just as before, {2, 6}+ {3, 7} = {1, 5}.

This is what it means to say that coset addition is well-defined: No matter which elements you choose

from the two sets, the sum of the elements will always be in the same coset.

(c) The table above is a group table for a group of order 4. There are only two groups of order 4: Z4 and
Z2 × Z2. Hence, the group above must be isomorphic to one of these groups. Replace

{0, 4} with 0, {1, 5} with 1, {2, 6} with 2, and {3, 7} with 3.

This gives the table:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Thus,
Z8

{0, 4}
≈ Z4.

Example. The cosets of the subgroup 〈19〉 in U20 are

〈19〉 = {1, 19}

3 · 〈19〉 = {3, 17}

7 · 〈19〉 = {7, 13}

9 · 〈19〉 = {9, 11}

(a) Compute {3, 17} · {9, 11}.

(b) Compute {3, 17}−1.

(c) Compute {9, 11}3.

(d) Construct a multiplication table for the quotient group
U20

〈19〉
. Determine whether the quotient group is

isomorphic to Z4 or to Z2 × Z2.
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(a) Take an element (it doesn’t matter which one) from each coset, say 3 ∈ {3, 17} and 11 ∈ {9, 11}.
Perform the operation on the elements you chose. In this case, it’s multiplication:

3 · 11 = 33 = 13.

Find the coset containing the answer: 13 ∈ {7, 13}.
Hence,

{3, 17} · {9, 11} = {7, 13}.

(b) Take an element (it doesn’t matter which one) from the coset, say 3 ∈ {3, 17}.
Perform the operation on the elements you chose. In this case, it’s finding the inverse (use the Extended

Euclidean Algorithm, or trial and error):

3−1 = 7.

Find the coset containing the answer: 7 ∈ {7, 13}.
Hence,

{3, 17}−1 = {7, 13}.

(c) Take an element (it doesn’t matter which one) from the coset, say 11 ∈ {9, 11}.
Perform the operation on the elements you chose. In this case, it’s cubing:

113 = 1331 = 11.

Find the coset containing the answer: 11 ∈ {9, 11}.
Hence,

{9, 11}3 = {9, 11}.

(d) To save writing, I’ll use 1, 3, 7, and 9 to represent the cosets. I did the multiplications to construct the
table the way I did the multiplication in (a) above.

· 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

I can see that {3, 17} has order 4. Therefore,
U20

〈19〉
≈ Z4.

Example. The cosets of 〈(1, 3)〉 in Z4 × Z4 are

〈(1, 3)〉 = {(0, 0), (1, 3), (2, 2), (3, 1)}

(0, 1) + 〈(1, 3)〉 = {(0, 1), (1, 0), (2, 3), (3, 2)}

(0, 2) + 〈(1, 3)〉 = {(0, 2), (1, 1), (2, 0), (3, 3)}

(0, 3) + 〈(1, 3)〉 = {(0, 3), (1, 2), (2, 1), (3, 0)}

(a) Compute [(0, 2) + 〈(1, 3)] + [(0, 3) + 〈(1, 3)].

(b) Construct an addition table for the quotient group
Z4 × Z4

〈(1, 3)〉
. Determine whether the quotient group is

isomorphic to Z4 or to Z2 × Z2.
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(a) Take an element (it doesn’t matter which one) from the cosets, say (0, 2) ∈ (0, 2) + 〈(1, 3) and (0, 3) ∈
(0, 3) + 〈(1, 3). (I’ll just use the coset representatives, but again, I could choose any elements from the two
cosets.)

Perform the operation on the elements you chose. In this case, it’s addition:

(0, 2) + (0, 3) = (0, 1).

Find the coset containing the answer:

(0, 1) ∈ {(0, 1), (1, 0), (2, 3), (3, 2)} = (0, 1) + 〈(1, 3).

Hence,
[(0, 2) + 〈(1, 3)] + [(0, 3) + 〈(1, 3)] = (0, 1) + 〈(1, 3).

(b) To save writing, I’ll use (0, 0), (0, 1), (0, 2), and (0, 3) to represent the cosets. I did the additions to
construct the table the way I did the addition in (a) above.

+ (0, 0) (0, 1) (0, 2) (0, 3)

(0, 0) (0, 0) (0, 1) (0, 2) (0, 3)

(0, 1) (0, 1) (0, 2) (0, 3) (0, 0)

(0, 2) (0, 2) (0, 3) (0, 0) (0, 1)

(0, 3) (0, 3) (0, 0) (0, 1) (0, 2)

I can see that (0, 1) + 〈(1, 3) has order 4, so
Z4 × Z4

〈(1, 3)〉
≈ Z4.

Example. (A quotient group of a dihedral group) This is the table for D3, the group of symmetries

of an equilateral triangle. r1 is rotation through
2π

3
, r2 is rotation through

4π

3
, and m1, m2, and m3 are

reflections through the altitude through vertices 1, 2, and 3, respectively.

id r1 r2 m1 m2 m3

id id r1 r2 m1 m2 m3

r1 r1 r2 id m3 m1 m2

r2 r2 id r1 m2 m3 m1

m1 m1 m2 m3 id r1 r2

m2 m2 m3 m1 r2 id r1

m3 m3 m1 m2 r1 r2 id

(a) Show that the rotation subgroup H = {id, r1, r2} is a normal subgroup of D3.

(b) Construct the multiplication table for the quotient group D3/H and identify the quotient group as a
familiar group.

(c) Consider the subgroup H ′ = {id,m1}. Show that H ′ is not normal in D3.

(a) Since H has 3 elements, it has index
6

3
= 2, so it must be normal.

You can check this directly but tediously by checking that gHg−1 ⊂ H for each g ∈ D3. For example,

m1Hm−1

1
= m1Hm1 = m1{id, r1, r2}m1 = {m1 idm1,m1r1m1,m1r2m1} = {id, r2, r1} = H.
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And so on for the other elements.
It’s also possible to show it’s normal geometrically, by reasoning about orientation.

(b) D3/H is a group with two elements:

D3/H = {H = {id, ρ1, ρ2},m1H = {m1,m2,m3}}.

Here is the group table for D3/H:

H m1H

H H m1H

m1H m1H H

Up to notation, this is “the” group of order 2, namely Z2.

(More generally, consider the group D2n of symmetries of the regular n-gon. This group has a subgroup

of rotations H consisting of rotations through the angles
2πk

n
, where 0 ≤ k < n. This subgroup is normal,

since it has index 2. To see this geometrically, observe that if ρ is a rotation and τ is also a rotation, τρτ−1

is obviously a rotation. On the other hand, suppose τ is a reflection. Then τρτ−1 is orientation-preserving,
so it must also be a rotation.)

(c) I must find a g ∈ D3 such that gH ′g−1 6= H ′. Here’s an example:

m2{id,m1}m
−1

2
= m2{id,m1}m2 = {m2 idm2,m2m1m2} = {id,m3} 6= {id,m1}.

Another way to prove that the subgroup isn’t normal is to compare the left and right cosets. The left
cosets are

{id,m1},m2{id,m1} = {m2, r2},m3{id,m1} = {m3, r1}.

The right cosets are

{id,m1}, {id,m1}m2 = {m2, r1}, {id,m1}m3 = {m3, r2}.

As you can see, the left and right cosets are not the same.

Remember that when a subgroup is normal, there is a well-defined multiplication on the set of cosets
of the subgroup. Let’s see how this works out for the two subgroup I discussed above.

The first table below is the multiplication table for D3, the group of symmetries of a triangle. The
subgroup H = {id, r1, r2} has two cosets: H itself and the set {m1,m2,m3}. Notice that the row and
column headings have been set up with the two cosets one after another.

Get out your coloring pencils! Color the two cosets in the table below in such a way that all the elements
of a given coset are the same color, and different cosets have different colors. For example, leave the elements
of H = {id, r1, r2} uncolored and color the elements {m1,m2,m3} green.

id r1 r2 m1 m2 m3

id id r1 r2 m1 m2 m3

r1 r1 r2 id m3 m1 m2

r2 r2 id r1 m2 m3 m1

m1 m1 m2 m3 id r1 r2

m2 m2 m3 m1 r2 id r1

m3 m3 m1 m2 r1 r2 id
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Consider the product of two elements ab. The coloring shows that the coset containing the product
depends only on the cosets containing a and b. Suppose ab is in the coset colored green. Take a′ in the same
coset as a and b′ in the same coset as b. Then a′b′ will also be in the coset colored green. This proves that
you can multiply cosets by multiplying coset representatives and get a well-defined multiplication.

Here is the same table rearranged to fit the non-normal subgroup H ′ = {id,m1} and its cosets r1H
′ =

{r1,m3} and r2H
′ = {r2,m2}. Color the elements of the three cosets with different colors as in the last

example.

id m1 r1 m3 r2 m2

id id m1 r1 m3 r2 m2

m1 m1 id m2 r2 m3 r1

r1 r1 m3 r2 m2 id m1

m3 m3 r1 m1 id m2 r2

r2 r2 m2 id m1 r1 m3

m2 m2 r2 m3 r1 m1 id

In this case, the coset containing a product a · b depends on the particular elements a and b, not just
on the cosets containing a and b. The coloring produces a table that is not arranged in nice “blocks” like

the previous table. For example, r1 · r1 = r2, which is in the third coset. On the other hand, m3 ·m3 = id,
which is in the first coset. You get different cosets, even though the factors in the two products are all in the
second coset. In this case, coset multiplication by multiplication of representatives is not well-defined.

It is natural to see how a new construction interacts with things like unions and intersections. Since the
union of subgroups is not a subgroup in general, it’s unreasonable to expect a union of normal subgroups to
be a normal subgroup. However, intersections work properly.

Proposition. The intersection of a family of normal subgroups is a normal subgroup.

Proof. Let G be a group, and let {Ha}a∈A be a family of normal subgroups of G. Let H = ∩a∈AHa. I
want to show that H ⊳ G. Since the intersection of a family of subgroups is a subgroup, it remains to show
that H is normal.

Let g ∈ G and let h ∈ H. I must show ghg−1 ∈ H. Now h ∈ H implies h ∈ Ha for all a, so (since
Ha ⊳ G for all a) ghg−1 ∈ Ha for all a. Therefore, ghg−1 ∈ ∩a∈AHa = H. Therefore, H is normal.

Definition. Let G be a group, and let S ⊂ G. The intersection of all normal subgroups of G containing S
is the normal subgroup generated by S.

Why are normal subgroups and quotient groups important? The idea is that you might be able to
understand groups by taking them apart into pieces, the way that you can factor a positive integer into a
product of primes. If you’re trying to understand a group G, you try to find a normal subgroup H. This
allows you to decompose G into smaller groups H and G/H. Now you try to find normal subgroups of H
and of G/H, and you keep going.

At some point, you may be unable to find any normal subgroups (other than {1} and the group itself).

Definition. A group G is simple if its only normal subgroups are {1} and G.

Thus, simple groups are to groups as prime numbers are to positive integers.

Proposition. Let n ≥ 2. Then n is prime if and only if Zn is simple.

Proof. Suppose n is prime. The order of a subgroup must divide the order of the group (by Lagrange’s
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theorem), and the only positive divisors of n are 1 and n. Therefore, the only subgroups — and hence the
only normal subgroups — are {0} and Zn. Therefore, Zn is simple.

Suppose n is composite. Then there is an integer m such that m | n and 1 < m < n. Since Zn is cyclic,
it has a subgroup with m elements; since Zn is abelian, that subgroup must be normal. Since Zn has a
normal subgroup other than {0} and Zn, it is not simple.

The hope is that if you know all the possible simple groups, and you know all the ways of putting them
together, then you’ll know all about groups. In its complete generality, this ideal is unattainable. However,
progress has been made in this endeavor for finite groups. The finite simple groups were completely classified
around 1980; estimates suggested that the complete proof (pieces of which were finished by many people
over the course of decades) ran to thousands of pages.

There is a fundamental relationship between kernels of group maps and normal subgroups; in fact,
normal subgroups are exactly the kernels of group maps. The first part of the next result proves part of this
assertion.

Proposition. Let f : G → H be a group homomorphism.

(a) ker f ⊳ G.

(b) If H ′ ⊳ H, then f−1(H ′) ⊳ G.

Proof. (a) I showed earlier that ker f is a subgroup of G. So I only need to show that ker f is normal. Let
x ∈ ker f (so f(x) = 1) and let g ∈ G. I need to show that gxg−1 ∈ ker f .

f(gxg−1) = f(g)f(x)f(g−1) = f(g)f(g)−1 = 1.

Hence, gxg−1 ∈ ker f , and ker f ⊳ G.

(b) I showed earlier that f−1(H ′) is a subgroup of G. I only need to show that if H ′ is normal in H, then
f−1(H ′) is normal in G.

Let x ∈ f−1(H ′), so f(x) ∈ H ′, and let g ∈ G. I must show that gxg−1 ∈ f−1(H ′). Apply f and see if
it winds up in H ′.

f(gxg−1) = f(g)f(x)f(g−1) = f(g)f(x)f(g)−1 ∈ f(g)H ′f(g)−1 ⊂ H ′.

(The last inclusion follows from normality of H ′.) Hence, gxg−1 ∈ f−1(H ′), and f−1(H ′) ⊳ G.

Remarks. (a) It’s not true in general that the image of a normal subgroup is normal. It is true if the map
is a surjection. (Try it yourself!)

(b) The lemma above says that kernels of group maps are normal subgroups. In fact, the converse is true,
and I’ll prove it later: Every normal subgroup is the kernel of a group map.

c©2018 by Bruce Ikenaga 11


