Quotient Rings of Polynomial Rings

In this section, I'll look at quotient rings of polynomial rings.
Let F be a field, and suppose $p(x) \in F[x] .\langle p(x)\rangle$ is the set of all multiples (by polynomials) of $p(x)$, the (principal) ideal generated by $p(x)$. When you form the quotient ring $\frac{F[x]}{\langle p(x)\rangle}$, it is as if you've set multiples of $p(x)$ equal to 0 .

If $a(x) \in F[x]$, then $a(x)+\langle p(x)\rangle$ is the coset of $\langle p(x)\rangle$ represented by $a(x)$.
Define $a(x)=b(x)(\bmod p(x))(a(x)$ is congruent to $b(x) \bmod p(x))$ to mean that

$$
p(x) \mid a(x)-b(x)
$$

In words, this means that $a(x)$ and $b(x)$ are congruent mod $p(x)$ if they differ by a multiple of $p(x)$. In equation form, this says $a(x)-b(x)=k(x) \cdot p(x)$ for some $k(x) \in F[x]$, or $a(x)=b(x)+k(x) \cdot p(x)$ for some $k(x) \in F[x]$.

Lemma. Let R be a commutative ring, and suppose $a(x), b(x), p(x) \in R[x]$. Then $a(x)=b(x)(\bmod p(x))$ if and only if $a(x)+\langle p(x)\rangle=b(x)+\langle p(x)\rangle$.

Proof. Suppose $a(x)=b(x)(\bmod p(x))$. Then $a(x)=b(x)+k(x) \cdot p(x)$ for some $k(x) \in R[x]$. Hence,

$$
a(x)+\langle p(x)\rangle=b(x)+k(x) \cdot p(x)+\langle p(x)\rangle=b(x)+\langle p(x)\rangle
$$

Conversely, suppose $a(x)+\langle p(x)\rangle=b(x)+\langle p(x)\rangle$. Then

$$
a(x) \in a(x)+\langle p(x)\rangle=b(x)+\langle p(x)\rangle .
$$

Hence,

$$
a(x)=b(x)+k(x) \cdot p(x) \quad \text { for some } \quad k(x) \in R[x] .
$$

This means that $a(x)=b(x)(\bmod p(x))$.
Depending on the situation, I may write $a(x)=b(x)(\bmod p(x))$ or $a(x)+\langle p(x)\rangle=b(x)+\langle p(x)\rangle$.

Example. (A quotient ring of the rational polynomial ring) Take $p(x)=x-2$ in $\mathbb{Q}[x]$. Then two polynomials are congruent $\bmod x-2$ if they differ by a multiple of $x-2$.
(a) Show that $2 x^{2}+3 x+5=x^{2}+4 x+7(\bmod x-2)$.
(b) Find a rational number r such that $x^{3}-4 x^{2}+x+11=r(\bmod x-2)$.
(c) Prove that $\frac{\mathbb{Q}[x]}{\langle x-2\rangle} \approx \mathbb{Q}$.
(a)
$\left(2 x^{2}+3 x+5\right)-\left(x^{2}+4 x+7\right)=x^{2}-x-2=(x+1)(x-2), \quad$ so $\quad 2 x^{2}+3 x+5=x^{2}+4 x+7(\bmod x-2)$.
(b) By the Remainder Theorem, when $f(x)=x^{3}-4 x^{2}+x+11$ is divided by $x-2$, the remainder is

$$
f(2)=2^{3}-4 \cdot 2^{2}+2+11=5
$$

Thus,

$$
\begin{aligned}
& x^{3}-4 x^{2}+x+11=(x-2) q(x)+5 \\
& x^{3}-4 x^{2}+x+11=5(\bmod x-2)
\end{aligned}
$$

(c) I'll use the First Isomorphism Theorem. Define $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}$ by

$$
\phi(f(x))=f(2)
$$

That is, ϕ evaluates a polynomial at $x=2$. Note that

$$
\phi(f(x)+g(x))=f(2)+g(2)=\phi(f(x))+\phi(g(x)) \quad \text { and } \quad \phi(f(x) g(x))=f(2) g(2)=\phi(f(x)) \phi(g(x))
$$

It follows that ϕ is a ring map.
I claim that $\operatorname{ker} \phi=\langle x-2\rangle$. Now $f(x) \in \operatorname{ker} \phi$ if and only if

$$
f(2)=\phi(f(x))=0
$$

That is, $f(x) \in \operatorname{ker} \phi$ if and only if 2 is a root of f. By the Root Theorem, this is equivalent to $x-2 \mid f(x)$, which is equivalent to $f(x) \in\langle x-2\rangle$.

Next, I'll show that ϕ is surjective. Let $q \in \mathbb{Q}$. I can think of q as a constant polynomial, and doing so, $\phi(q)=q$. Therefore, ϕ is surjective.

Using these results,

$$
\frac{\mathbb{Q}[x]}{\langle x-2\rangle}=\frac{\mathbb{Q}[x]}{\operatorname{ker} \phi} \approx \operatorname{im} \phi=\mathbb{Q}
$$

The first equality follows from the fact that $\langle x-2\rangle=\operatorname{ker} \phi$. The isomorphism follows from the First Isomorphism Theorem. The second equality follows from the fact that ϕ is surjective.

In the last example, $\frac{F[x]}{\langle p(x)\rangle}$ was a field. The next result says that this is the case exactly when $p(x)$ is irreducible.
Theorem. $\frac{F[x]}{\langle p(x)\rangle}$ is a field if and only if $p(x)$ is irreducible.
Proof. Since $F[x]$ is a commutative ring with identity, so is $\frac{F[x]}{\langle p(x)\rangle}$.
Suppose $p(x)$ is irreducible. I need to show that $\frac{F[x]}{\langle p(x)\rangle}$ is a field. I need to show that nonzero elements are invertible.

Take a nonzero element of $\frac{F[x]}{\langle p(x)\rangle}$ — say $a(x)+\langle p(x)\rangle$, for $a(x) \in F[x]$. What does it mean for $a(x)+\langle p(x)\rangle$ to be nonzero? It means that $a(x) \notin\langle p(x)\rangle$, so $p(x) \nmid a(x)$.

Now what is the greatest common divisor of $a(x)$ and $p(x)$? Well, $(a(x), p(x)) \mid p(x)$, but $p(x)$ is irreducible - its only factors are units and unit multiples of $p(x)$.

Suppose $(a(x), p(x))=k \cdot p(x)$, where $k \in F$ and $k \neq 0$. Then $k \cdot p(x) \mid a(x)$, i.e. $k \cdot p(x) b(x)=a(x)$ for some $b(x)$. But then $p(x)[k \cdot b(x)]=a(x)$ shows that $p(x) \mid a(x)$, contrary to assumption.

The only other possibility is that $(a(x), p(x))=k$, where $k \in F$ and $k \neq 0$. So I can find polynomials $m(x), n(x)$, such that

$$
a(x) m(x)+p(x) n(x)=k .
$$

Then

$$
a(x) \cdot\left(\frac{1}{k} m(x)\right)+p(x) \cdot\left(\frac{1}{k} n(x)\right)=1
$$

Hence,

$$
\begin{aligned}
a(x) \cdot\left(\frac{1}{k} m(x)\right)+p(x) \cdot\left(\frac{1}{k} n(x)\right)+\langle p(x)\rangle & =1+\langle p(x)\rangle \\
a(x) \cdot\left(\frac{1}{k} m(x)\right)+\langle p(x)\rangle & =1+\langle p(x)\rangle \\
(a(x)+\langle p(x)\rangle)\left(\frac{1}{k} m(x)+\langle p(x)\rangle\right) & =1+\langle p(x)\rangle
\end{aligned}
$$

This shows that $\frac{1}{k} m(x)+\langle p(x)\rangle$ is the multiplicative inverse of $a(x)+\langle p(x)\rangle$. Therefore, $a(x)+\langle p(x)\rangle$ is invertible, and $\frac{F[x]}{\langle p(x)\rangle}$ is a field.

Going the other way, suppose that $p(x)$ is not irreducible. Then I can find polynomials $c(x), d(x)$ such that $p(x)=c(x) d(x)$, where $c(x)$ and $d(x)$ both have smaller degree than $p(x)$.

Because $c(x)$ and $d(x)$ have smaller degree than $p(x)$, they're not divisible by $p(x)$. In particular,

$$
c(x)+\langle p(x)\rangle \neq 0 \quad \text { and } \quad d(x)+\langle p(x)\rangle \neq 0
$$

But $p(x)=c(x) d(x)$ gives

$$
\begin{aligned}
p(x)+\langle p(x)\rangle & =c(x) d(x)+\langle p(x)\rangle \\
0 & =(c(x)+\langle p(x)\rangle)(d(x)+\langle p(x)\rangle)
\end{aligned}
$$

This shows that $\frac{F[x]}{\langle p(x)\rangle}$ has zero divisors. Therefore, it's not an integral domain - and since fields are integral domains, it can't be a field, either. $\quad \square$

Example. (A quotient ring which is not an integral domain) Prove that $\frac{\mathbb{Q}[x]}{\left\langle x^{2}-1\right\rangle}$ is not an integral domain by exhibiting a pair of zero divisors.
$(x-1)+\left\langle x^{2}-1\right\rangle$ and $(x+1)+\left\langle x^{2}-1\right\rangle$ are zero divisors, because

$$
(x-1)(x+1)=x^{2}-1=0\left(\bmod x^{2}-1\right)
$$

Example. (A quotient ring which is a field) (a) Show that $\frac{\mathbb{Q}[x]}{\left\langle x^{2}+2 x+2\right\rangle}$ is a field.
(b) Find the inverse of $\left(x^{3}+1\right)+\left\langle x^{2}+2 x+2\right\rangle$ in $\frac{\mathbb{Q}[x]}{\left\langle x^{2}+2 x+2\right\rangle}$.
(a) Since $x^{2}+2 x+2=(x+1)^{2}+1>0$ for all $x \in \mathbb{Q}$, it follows that $x^{2}+2 x+2$ has no rational roots. Hence, it's irreducible, and the quotient ring is a field.
(b) Apply the Extended Euclidean algorithm to $x^{3}+1$ and $x^{2}+2 x+2$:

$x^{3}+1$	-	$\frac{x^{2}}{2}-\frac{5 x}{4}+\frac{3}{2}$
$x^{2}+2 x+2$	$x-2$	$\frac{x}{2}-\frac{1}{4}$
$2 x+5$	$\frac{x}{2}-\frac{1}{4}$	1
$\frac{13}{4}$	$\frac{8 x}{13}+\frac{20}{13}$	0

Therefore,

$$
\frac{13}{4}=\left(\frac{x^{2}}{2}-\frac{5 x}{4}+\frac{3}{2}\right)\left(x^{2}+2 x+2\right)-\left(\frac{x}{2}-\frac{1}{4}\right)\left(x^{3}+1\right)
$$

Hence,

$$
1=\frac{4}{13}\left(\frac{x^{2}}{2}-\frac{5 x}{4}+\frac{3}{2}\right)\left(x^{2}+2 x+2\right)-\frac{4}{13}\left(\frac{x}{2}-\frac{1}{4}\right)\left(x^{3}+1\right) .
$$

Reducing mod $x^{2}+2 x+2$, I get

$$
\begin{aligned}
& 1+\left\langle x^{2}+2 x+2\right\rangle=-\frac{4}{13}\left(\frac{x}{2}-\frac{1}{4}\right)\left(x^{3}+1\right)+\left\langle x^{2}+2 x+2\right\rangle \\
& 1+\left\langle x^{2}+2 x+2\right\rangle=\left(-\frac{4}{13}\left(\frac{x}{2}-\frac{1}{4}\right)+\left\langle x^{2}+2 x+2\right\rangle\right)\left(\left(x^{3}+1\right)+\left\langle x^{2}+2 x+2\right\rangle\right)
\end{aligned}
$$

Thus, $-\frac{4}{13}\left(\frac{x}{2}-\frac{1}{4}\right)+\left\langle x^{2}+2 x+2\right\rangle$ is the inverse of $\left(x^{3}+1\right)+\left\langle x^{2}+2 x+2\right\rangle . \quad \square$

Example. (A field with 4 elements) (a) Prove that $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}$ is a field.
(b) Find $a x+b \in \mathbb{Z}_{2}[x]$ so that

$$
\left(x^{4}+x^{3}+1\right)+\left\langle x^{2}+x+1\right\rangle=(a x+b)+\left\langle x^{2}+x+1\right\rangle
$$

(c) Construct addition and multiplication tables for $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}$.
(a) Let $f(x)=x^{2}+x+1$. Then $f(0)=1$ and $f(1)=1$. Since f has no roots in \mathbb{Z}_{2}, it's irreducible. Hence, $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}$ is a field.
(b) By the Division Algorithm,

$$
x^{4}+x^{3}+1=\left(x^{2}+x+1\right)\left(x^{2}+1\right)+x .
$$

This equation says that $x^{4}+x^{3}+1$ and x differ by a multiple of $x^{2}+x+1$, so they represent the same coset $\bmod x^{2}+x+1$.

Therefore,

$$
\left(x^{4}+x^{3}+1\right)+\left\langle x^{2}+x+1\right\rangle=x+\left\langle x^{2}+x+1\right\rangle
$$

(c) By the Division Algorithm, if $f(x) \in \mathbb{Z}_{2}[x]$, then

$$
f(x)=\left(x^{2}+x+1\right) q(x)+(a x+b), \quad \text { where } \quad a, b \in \mathbb{Z}_{2}
$$

There are two possibilities for a and two for b, a total of 4 . It follows that $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}$ is a field with 4 elements. The elements are

$$
0+\left\langle x^{2}+x+1\right\rangle, 1+\left\langle x^{2}+x+1\right\rangle, x+\left\langle x^{2}+x+1\right\rangle,(x+1)+\left\langle x^{2}+x+1\right\rangle
$$

Here are the addition and multiplication tables for $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}$:

+	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

\cdot	0	1	x	$x+1$
0	0	0	0	0
1	0	1	x	$x+1$
x	0	x	$x+1$	1
$x+1$	0	$x+1$	1	x

The addition table is fairly easy to understand: For example, $x+(x+1)=1$, because $2 x=0(\bmod 2)$. For the multiplication table, take $x \cdot x$ as an example. $x \cdot x=x^{2}$; I apply the Division Algorithm to get

$$
x^{2}=1 \cdot\left(x^{2}+x+1\right)+(x+1)
$$

So $x \cdot x=x+1\left(\bmod x^{2}+x+1\right)$.
Alternatively, you can use the fact that in the quotient ring $x^{2}+x+1=0$ (omitting the coset notation), so $x^{2}=x+1$ (remember that $-1=1$ in \mathbb{Z}_{s}). $\quad \square$

Remark. In the same way, you can construct a field of order p^{n} for any prime n and any $n \geq 1$. Just take $\mathbb{Z}_{p}[x]$ and form the quotient ring $\frac{\mathbb{Z}_{p}[x]}{\langle f(x)\rangle}$, where $f(x)$ is an irreducible polynomial of degree n.
Example. (Computations in a quotient ring) (a) Show that $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{3}+2 x+1\right\rangle}$ is a field.
(b) How many elements are there in $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{3}+2 x+1\right\rangle}$?
(c) Compute

$$
\left[\left(x^{2}+x+2\right)+\left\langle x^{3}+2 x+1\right\rangle\right]\left[\left(2 x^{2}+1\right)+\left\langle x^{3}+2 x+1\right\rangle\right] .
$$

Express your answer in the form $\left(a x^{2}+b x+c\right)+\left\langle x^{3}+2 x+1\right\rangle$, where $a, b, c \in \mathbb{Z}_{3}$.
(d) Find $\left[\left(x^{2}+1\right)+\left\langle x^{3}+2 x+1\right\rangle\right]^{-1}$.
(a) $x^{3}+2 x+1$ has no roots in \mathbb{Z}_{3} :

x	0	1	2
$x^{3}+2 x+1(\bmod 3)$	1	1	1

Since $x^{3}+2 x+1$ is a cubic, it follows that it's irreducible. Hence, $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{3}+2 x+1\right\rangle}$ is a field.
(b) By the Division Algorithm, every element of $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{3}+2 x+1\right\rangle}$ can be written in the form

$$
\left(a x^{2}+b x+c\right)+\left\langle x^{3}+2 x+1\right\rangle, \quad \text { where } \quad a, b, c \in \mathbb{Z}_{3}
$$

There are 3 choices each for a, b, and c. Therefore, $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{3}+2 x+1\right\rangle}$ has $3^{3}=27$ elements. $\quad \square$
(c)

$$
\left[\left(x^{2}+x+2\right)+\left\langle x^{3}+2 x+1\right\rangle\right]\left[\left(2 x^{2}+1\right)+\left\langle x^{3}+2 x+1\right\rangle\right]=\left(2 x^{4}+2 x^{3}+2 x^{2}+x+2\right)+\left\langle x^{3}+2 x+1\right\rangle
$$

By the Division Algorithm,

$$
2 x^{4}+2 x^{3}+2 x^{2}+x+2=(2 x+2)\left(x^{3}+2 x+1\right)+x^{2} .
$$

Therefore,

$$
\left(2 x^{4}+2 x^{3}+2 x^{2}+x+2\right)+\left\langle x^{3}+2 x+1\right\rangle=x^{2}+\left\langle x^{3}+2 x+1\right\rangle . \quad \square
$$

(d) Apply the Extended Euclidean algorithm:

$x^{3}+2 x+1$	-	$x^{2}+2 x+1$
$x^{2}+1$	x	$x+2$
$x+1$	$x+2$	1
2	$2 x+2$	0

$$
\begin{array}{r}
\left(x^{2}+2 x+1\right)\left(x^{2}+1\right)-(x+2)\left(x^{3}+2 x+1\right)=2 \\
\left(2 x^{2}+x+2\right)\left(x^{2}+1\right)-(2 x+1)\left(x^{3}+2 x+1\right)=1
\end{array}
$$

Therefore,

$$
\left[\left(2 x^{2}+x+2\right)+\left\langle x^{3}+2 x+1\right\rangle\right]\left[\left(x^{2}+1\right)+\left\langle x^{3}+2 x+1\right\rangle\right]=1+\left\langle x^{3}+2 x+1\right\rangle
$$

Hence,

$$
\left[\left(x^{2}+1\right)+\left\langle x^{3}+2 x+1\right\rangle\right]^{-1}=\left(2 x^{2}+x+2\right)+\left\langle x^{3}+2 x+1\right\rangle
$$

