4-12-2020
Quotient Rings of Polynomial Rings

In this section, I'll look at quotient rings of polynomial rings.
Let F be a field, and suppose p(x) € Fz]. (p(z)) is the set of all multiples (by polynomials) of p(x),

F
the (principal) ideal generated by p(z). When you form the quotient ring *

[z]
(p(z))’
multiples of p(x) equal to 0.
If a(z) € F[z], then a(x) + (p(z)) is the coset of (p(x)) represented by a(x).
Define a(x) = b(x) (mod p(z)) (a(z) is congruent to b(x) mod p(x)) to mean that

p(z) | a(z) — b(z).

In words, this means that a(x) and b(z) are congruent mod p(z) if they differ by a multiple of p(z). In
equation form, this says a(x) — b(z) = k(z) - p(z) for some k(z) € F[z], or a(x) = b(x) + k(z) - p(z) for some

it is as if you've set

Lemma. Let R be a commutative ring, and suppose a(z),b(z),p(z) € R[z]. Then a(x) = b(z) (mod p(z))
if and only if a(z) + (p(x)) = b(x) + (p(z)).

Proof. Suppose a(z) = b(z) (mod p(x)). Then a(z) = b(x) + k(z) - p(z) for some k(x) € R[z]. Hence,
a(x) + (p(x)) = b(x) + k(x) - p(z) + (p(x)) = b(z) + (p(z)).

) =
Conversely, suppose a(z) + {p(z)) = b(x) + (p(x)). Then
(

+ k
+
a(z) € a(z) + (p(x)) = b(z) + (p(x)).

Hence,
a(z) =b(x) + k(z) - p(z) for some k(x) € R[z].

This means that a(xz) = b(x) (mod p(z)). O

Depending on the situation, I may write a(z) = b(z) (mod p(x)) or a(z) + (p(x)) = b(z) + (p(x)).

Example. (A quotient ring of the rational polynomial ring) Take p(z) =  — 2 in Q[z]. Then two
polynomials are congruent mod x — 2 if they differ by a multiple of = — 2.

(a) Show that 222 + 32 +5 = 2% + 42 + 7 (mod x — 2).
(b) Find a rational number r such that 2% — 422 + 2z + 11 =7 (mod x — 2).

Q[z]
(z—2)

(c) Prove that

(a)

(22° +32+5) — (2* +da+T7) =2 —x -2 = (z+1)(x—2), so 22°+3z+5=2+42+7 (modz —2). O
(b) By the Remainder Theorem, when f(x) = 2® — 422 + x + 11 is divided by = — 2, the remainder is
f(2)=2°—4.22 42411 =5.

Thus,
23 —dr? + x4+ 11 = (z — 2)q(x) +5
23— 4 +x+11=5 (mod z — 2)
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(c) T'll use the First Isomorphism Theorem. Define ¢ : Q[z] — Q by

¢ (f(x) = f(2).
That is, ¢ evaluates a polynomial at x = 2. Note that

¢ (f(x) +9(x) = f(2) +9(2) = ¢ (f(2)) + ¢ (9(x)) and & (f(x)g()) = f(2)9(2) = & (f(2)) ¢ (9()),

It follows that ¢ is a ring map.
I claim that ker ¢ = (x — 2). Now f(z) € ker ¢ if and only if

f2) = (f(x)) = 0.

That is, f(z) € ker¢ if and only if 2 is a root of f. By the Root Theorem, this is equivalent to
x — 2| f(x), which is equivalent to f(z) € (x — 2).
Next, I'll show that ¢ is surjective. Let g € Q. I can think of ¢ as a constant polynomial, and doing so,
#(q) = q. Therefore, ¢ is surjective.
Using these results,
Qlz] _ Qlz]
(x—2)  kero
The first equality follows from the fact that (x — 2) = ker ¢. The isomorphism follows from the First
Isomorphism Theorem. The second equality follows from the fact that ¢ is surjective. 0O

~im¢ = Q.

Flz]
(p(x))

In the last example, was a field. The next result says that this is the case exactly when p(z) is

irreducible.

Theorem. is a field if and only if p(x) is irreducible.

F
{p(z))

Flx]
(p(x))

is a field. I need to show that nonzero elements

Proof. Since F[z] is a commutative ring with identity, so is

Flz]
(p(x))

Suppose p(z) is irreducible. T need to show that

are invertible.

Fla]

Take a nonzero element of oy say a(z) + (p(x)), for a(x) € Flx]. What does it mean for
p(x

a(x) + (p(z)) to be nonzero? It means that a(x) ¢ (p(z)), so p(x) fa(z).

Now what is the greatest common divisor of a(z) and p(z)? Well, (a(x),p(x)) | p(z), but p(x) is
irreducible — its only factors are units and unit multiples of p(x).

Suppose (a(z),p(z)) = k- p(z), where k € F and k # 0. Then k - p(z) | a(z), i.e. k-p(z)b(x) = a(x) for
some b(x). But then p(z)[k - b(x)] = a(x) shows that p(x) | a(x), contrary to assumption.

The only other possibility is that (a(z),p(z)) = k, where k € F and k # 0. So I can find polynomials
m(z), n(x), such that

a(x)m(x) + p(x)n(z) = k.

Then

2
8
S~—
Y

| =

tm(@)) + ) (golo)) =1

Hence,



1
This shows that Em(x) + (p(x)) is the multiplicative inverse of a(x) + (p(x)). Therefore, a(x) + (p(zx))

is invertible, and Flz] is a field.
{p(z))

Going the other way, suppose that p(z) is not irreducible. Then I can find polynomials ¢(x), d(z) such
that p(z) = c¢(z)d(x), where ¢(z) and d(x) both have smaller degree than p(x).
Because ¢(z) and d(z) have smaller degree than p(x), they’re not divisible by p(z). In particular,

e(2) + (p(a) £0 and  d(x) + (p(a)) 0.

This shows that W has zero divisors. Therefore, it’s not an integral domain — and since fields are
p(x

integral domains, it can’t be a field, either. 0O

Example. (A quotient ring which is not an integral domain) Prove that % is not an integral
22—
domain by exhibiting a pair of zero divisors.
(z —1) + (2% — 1) and (z + 1) + (2? — 1) are zero divisors, because
(z—1)(z+1)=2>-1=0 (mod 2> —1). O
Example. (A quotient ring which is a field) (a) Show that @2_?%% is a field.
(b) Find the inverse of (2 + 1) + (z? + 2z + 2) in %
(22 4 2z + 2)

(a) Since 2% + 2z +2 = (z +1)2+1 > 0 for all z € Q, it follows that 2% + 2z + 2 has no rational roots.
Hence, it’s irreducible, and the quotient ring is a field. O

(b) Apply the Extended Euclidean algorithm to 2% + 1 and 2% + 2z + 2:

2
3 T 5 3
1 _ L=l
x° + 5 4+2
1
24 9042 ) r_-
e+ 2x + x 5 1
z 1
2 5 - — = 1
T + 51
13 8x 20 0
4 13 13

Therefore,



Hence,

4 (2* Bz 3 9 4 [z 1 3

Reducing mod z2 4+ 2z + 2, I get

4 1
1+ (@ +20+2) = —— (2 =) (@ + 1) + (@ + 22 +2)
13\2 4
4 (2 1 3 9
14 (2% + 22+ 2) 5l 1 (@® +20+2) ) ((2®+1) + (2° + 22+ 2))
4 (x 1 9 . . 3 2
Thus,—E 571 + (x® + 2x + 2) is the inverse of (z° + 1) + (z* +2x +2). O
. Zo|x] .
Example. (A field with 4 elements) (a) Prove that —————— is a field.
(2 +2+4+1)

(b) Find ax + b € Z3|x] so that
(*+ 23+ D)+ (@ +2+1) = (ax +b)+ (2® + 2+ 1).

Z

(¢) Construct addition and multiplication tables for &
(@2 +ax+1)

(a) Let f(z) =2? +x+ 1. Then f(0) =1 and f(1) = 1. Since f has no roots in Zs, it’s irreducible. Hence,

Z
& is a field. O
(@2 +2x+1)

(b) By the Division Algorithm,
4t 1= 4+ D@+ 1)+ 2

This equation says that 2* + 22 + 1 and x differ by a multiple of 22 + 2 + 1, so they represent the same
coset mod z? + z + 1.
Therefore,
(*+ 23+ )+ (@ +z+ )=+ @ +2+1). O

(¢) By the Division Algorithm, if f(x) € Zz[z], then
f(z) = (z* + 2+ Vg(x) + (ax +b), where a,b€ Zo.

ZQ [I]

m is a field with

There are two possibilities for a and two for b, a total of 4. It follows that

4 elements. The elements are

0+ +o+ 1)1+ @ +a+1),z+ @ +2+1),(x+1)+ (&> +z+1).

Here are the addition and multiplication tables for &
(x2+2x+1)
+ 0 1 T r+1
0 0 1 x z+1
1 1 0 z+1 x
x x z+1 0 1
z+1 z+1 z 1 0




0 1 x r+1
0 0 0 0 0
1 0 1 x z+1
x 0 x z+1 1
z+1 0 z+1 1 x

The addition table is fairly easy to understand: For example, z + (z 4+ 1) = 1, because 2z = 0 (mod 2).
For the multiplication table, take = - as an example. x -2 = z2; I apply the Division Algorithm to get

=12 +x+1)+ (z+1).

Soz-z=x+1 (mod 2?+ 2z +1).
Alternatively, you can use the fact that in the quotient ring 22 +z +1 = 0 (omitting the coset notation),
so 22 =z + 1 (remember that —1 = 1in Zs). O

Remark. In the same way, you can construct a field of order p™ for any prime n and any n > 1. Just take
L[]
(f(x))

Zy[z] and form the quotient ring , where f(x) is an irreducible polynomial of degree n.

Z
Example. (Computations in a quotient ring) (a) Show that ﬁ% is a field.
Z
(b) How many elements are there in 7@3 +32[§]+ 0 ?

(¢) Compute
[(2®+2+2)+ (@ + 22+ 1)] [(222 +1) + (z* + 22 + 1)] .

Express your answer in the form (az? + bz + ¢) + (2® + 2z + 1), where a,b, ¢ € Zs.
(d) Find [(22 +1) + (z° + 20 + 1)] .

(a) 23 + 2z + 1 has no roots in Zs:

T 0 1 2
342z +1 (mod 3) 1 1 1
Z
Since 2% 4+ 22 + 1 is a cubic, it follows that it’s irreducible. Hence, & is a field. 0O
(23 + 22+ 1)
Z
(b) By the Division Algorithm, every element of & can be written in the form
(x3 4+ 2z + 1)

(ax® + bz +c) + (23 + 2z +1), where a,b,c € Zs.

Z3 [:v]

3
m has 3° = 27 elements. 0O

There are 3 choices each for a, b, and ¢. Therefore,
(c)
(22 +2+2)+ (2° + 20+ 1)] [(222 + 1) + (2 + 22+ 1)] = (22" +22° + 22° + 2 + 2) + (2° + 22 + 1).
By the Division Algorithm,
20 + 223 4222 4o + 2= (22 4+ 2)(2® + 22 + 1) + 22
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Therefore,
(22 +22° + 202 + 24+ 2)+ (@ + 20+ 1) =2+ @* + 22 +1). O

(d) Apply the Extended Euclidean algorithm:

22+ 20 +1 - 2?2+ 22 +1
2 +1 T T+ 2
z+1 x4+ 2 1
2 2z + 2 0

(2 +22+1)(2*+1) - (2 +2)(@* +2x +1) =2
22+ +2)(2*+1) - Qe+ D(* +22+1) =1
Therefore,

(222 + 2+ 2)+ (2° + 22+ 1)] [(2® + 1) + (2 + 22+ 1)] = 1+ (2® + 22 + 1).

Hence,
(B + 1)+ @ +20+1)] ' = (2 +2+2) + (@ +22+1). O
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