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Quotient Rings of Polynomial Rings

In this section, I’ll look at quotient rings of polynomial rings.
Let F be a field, and suppose p(x) ∈ F [x]. 〈p(x)〉 is the set of all multiples (by polynomials) of p(x),

the (principal) ideal generated by p(x). When you form the quotient ring
F [x]

〈p(x)〉
, it is as if you’ve set

multiples of p(x) equal to 0.
If a(x) ∈ F [x], then a(x) + 〈p(x)〉 is the coset of 〈p(x)〉 represented by a(x).
Define a(x) = b(x) (mod p(x)) (a(x) is congruent to b(x) mod p(x)) to mean that

p(x) | a(x) − b(x).

In words, this means that a(x) and b(x) are congruent mod p(x) if they differ by a multiple of p(x). In
equation form, this says a(x)− b(x) = k(x) · p(x) for some k(x) ∈ F [x], or a(x) = b(x) + k(x) · p(x) for some
k(x) ∈ F [x].

Lemma. Let R be a commutative ring, and suppose a(x), b(x), p(x) ∈ R[x]. Then a(x) = b(x) (mod p(x))
if and only if a(x) + 〈p(x)〉 = b(x) + 〈p(x)〉.

Proof. Suppose a(x) = b(x) (mod p(x)). Then a(x) = b(x) + k(x) · p(x) for some k(x) ∈ R[x]. Hence,

a(x) + 〈p(x)〉 = b(x) + k(x) · p(x) + 〈p(x)〉 = b(x) + 〈p(x)〉.

Conversely, suppose a(x) + 〈p(x)〉 = b(x) + 〈p(x)〉. Then

a(x) ∈ a(x) + 〈p(x)〉 = b(x) + 〈p(x)〉.

Hence,
a(x) = b(x) + k(x) · p(x) for some k(x) ∈ R[x].

This means that a(x) = b(x) (mod p(x)).

Depending on the situation, I may write a(x) = b(x) (mod p(x)) or a(x) + 〈p(x)〉 = b(x) + 〈p(x)〉.

Example. (A quotient ring of the rational polynomial ring) Take p(x) = x − 2 in Q[x]. Then two
polynomials are congruent mod x− 2 if they differ by a multiple of x− 2.

(a) Show that 2x2 + 3x+ 5 = x2 + 4x+ 7 (mod x− 2).

(b) Find a rational number r such that x3 − 4x2 + x+ 11 = r (mod x− 2).

(c) Prove that
Q[x]

〈x− 2〉
≈ Q.

(a)

(2x2+3x+5)− (x2+4x+7) = x2−x−2 = (x+1)(x−2), so 2x2+3x+5 = x2+4x+7 (mod x− 2) .

(b) By the Remainder Theorem, when f(x) = x3 − 4x2 + x+ 11 is divided by x− 2, the remainder is

f(2) = 23 − 4 · 22 + 2+ 11 = 5.

Thus,
x3 − 4x2 + x+ 11 = (x− 2)q(x) + 5

x3 − 4x2 + x+ 11 = 5 (mod x− 2)
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(c) I’ll use the First Isomorphism Theorem. Define φ : Q[x] → Q by

φ (f(x)) = f(2).

That is, φ evaluates a polynomial at x = 2. Note that

φ (f(x) + g(x)) = f(2) + g(2) = φ (f(x)) + φ (g(x)) and φ (f(x)g(x)) = f(2)g(2) = φ (f(x))φ (g(x)) ,

It follows that φ is a ring map.
I claim that kerφ = 〈x− 2〉. Now f(x) ∈ kerφ if and only if

f(2) = φ (f(x)) = 0.

That is, f(x) ∈ kerφ if and only if 2 is a root of f . By the Root Theorem, this is equivalent to
x− 2 | f(x), which is equivalent to f(x) ∈ 〈x− 2〉.

Next, I’ll show that φ is surjective. Let q ∈ Q. I can think of q as a constant polynomial, and doing so,
φ(q) = q. Therefore, φ is surjective.

Using these results,
Q[x]

〈x− 2〉
=

Q[x]

kerφ
≈ imφ = Q.

The first equality follows from the fact that 〈x − 2〉 = kerφ. The isomorphism follows from the First
Isomorphism Theorem. The second equality follows from the fact that φ is surjective.

In the last example,
F [x]

〈p(x)〉
was a field. The next result says that this is the case exactly when p(x) is

irreducible.

Theorem.
F [x]

〈p(x)〉
is a field if and only if p(x) is irreducible.

Proof. Since F [x] is a commutative ring with identity, so is
F [x]

〈p(x)〉
.

Suppose p(x) is irreducible. I need to show that
F [x]

〈p(x)〉
is a field. I need to show that nonzero elements

are invertible.

Take a nonzero element of
F [x]

〈p(x)〉
— say a(x) + 〈p(x)〉, for a(x) ∈ F [x]. What does it mean for

a(x) + 〈p(x)〉 to be nonzero? It means that a(x) /∈ 〈p(x)〉, so p(x) 6 | a(x).
Now what is the greatest common divisor of a(x) and p(x)? Well, (a(x), p(x)) | p(x), but p(x) is

irreducible — its only factors are units and unit multiples of p(x).
Suppose (a(x), p(x)) = k · p(x), where k ∈ F and k 6= 0. Then k · p(x) | a(x), i.e. k · p(x)b(x) = a(x) for

some b(x). But then p(x)[k · b(x)] = a(x) shows that p(x) | a(x), contrary to assumption.
The only other possibility is that (a(x), p(x)) = k, where k ∈ F and k 6= 0. So I can find polynomials

m(x), n(x), such that
a(x)m(x) + p(x)n(x) = k.

Then

a(x) ·

(

1

k
m(x)

)

+ p(x) ·

(

1

k
n(x)

)

= 1.

Hence,

a(x) ·

(

1

k
m(x)

)

+ p(x) ·

(

1

k
n(x)

)

+ 〈p(x)〉 = 1+ 〈p(x)〉

a(x) ·

(

1

k
m(x)

)

+ 〈p(x)〉 = 1+ 〈p(x)〉

(a(x) + 〈p(x)〉)

(

1

k
m(x) + 〈p(x)〉

)

= 1+ 〈p(x)〉

2



This shows that
1

k
m(x) + 〈p(x)〉 is the multiplicative inverse of a(x) + 〈p(x)〉. Therefore, a(x) + 〈p(x)〉

is invertible, and
F [x]

〈p(x)〉
is a field.

Going the other way, suppose that p(x) is not irreducible. Then I can find polynomials c(x), d(x) such
that p(x) = c(x)d(x), where c(x) and d(x) both have smaller degree than p(x).

Because c(x) and d(x) have smaller degree than p(x), they’re not divisible by p(x). In particular,

c(x) + 〈p(x)〉 6= 0 and d(x) + 〈p(x)〉 6= 0.

But p(x) = c(x)d(x) gives

p(x) + 〈p(x)〉 = c(x)d(x) + 〈p(x)〉

0 = (c(x) + 〈p(x)〉) (d(x) + 〈p(x)〉)

This shows that
F [x]

〈p(x)〉
has zero divisors. Therefore, it’s not an integral domain — and since fields are

integral domains, it can’t be a field, either.

Example. (A quotient ring which is not an integral domain) Prove that
Q[x]

〈x2 − 1〉
is not an integral

domain by exhibiting a pair of zero divisors.

(x− 1) + 〈x2 − 1〉 and (x+ 1) + 〈x2 − 1〉 are zero divisors, because

(x− 1)(x+ 1) = x2 − 1 = 0
(

mod x2 − 1
)

.

Example. (A quotient ring which is a field) (a) Show that
Q[x]

〈x2 + 2x+ 2〉
is a field.

(b) Find the inverse of (x3 + 1) + 〈x2 + 2x+ 2〉 in
Q[x]

〈x2 + 2x+ 2〉
.

(a) Since x2 + 2x + 2 = (x + 1)2 + 1 > 0 for all x ∈ Q, it follows that x2 + 2x + 2 has no rational roots.
Hence, it’s irreducible, and the quotient ring is a field.

(b) Apply the Extended Euclidean algorithm to x3 + 1 and x2 + 2x+ 2:

x3 + 1 -
x2

2
−

5x

4
+

3

2

x2 + 2x+ 2 x− 2
x

2
−

1

4

2x+ 5
x

2
−

1

4
1

13

4

8x

13
+

20

13
0

Therefore,
13

4
=

(

x2

2
−

5x

4
+

3

2

)

(x2 + 2x+ 2)−

(

x

2
−

1

4

)

(x3 + 1).

3



Hence,

1 =
4

13

(

x2

2
−

5x

4
+

3

2

)

(x2 + 2x+ 2)−
4

13

(

x

2
−

1

4

)

(x3 + 1).

Reducing mod x2 + 2x+ 2, I get

1 + 〈x2 + 2x+ 2〉 = −
4

13

(

x

2
−

1

4

)

(x3 + 1) + 〈x2 + 2x+ 2〉

1 + 〈x2 + 2x+ 2〉 =

(

−
4

13

(

x

2
−

1

4

)

+ 〈x2 + 2x+ 2〉

)

(

(x3 + 1) + 〈x2 + 2x+ 2〉
)

Thus, −
4

13

(

x

2
−

1

4

)

+ 〈x2 + 2x+ 2〉 is the inverse of (x3 + 1) + 〈x2 + 2x+ 2〉.

Example. (A field with 4 elements) (a) Prove that
Z2[x]

〈x2 + x+ 1〉
is a field.

(b) Find ax+ b ∈ Z2[x] so that

(x4 + x3 + 1) + 〈x2 + x+ 1〉 = (ax+ b) + 〈x2 + x+ 1〉.

(c) Construct addition and multiplication tables for
Z2[x]

〈x2 + x+ 1〉
.

(a) Let f(x) = x2 + x+ 1. Then f(0) = 1 and f(1) = 1. Since f has no roots in Z2, it’s irreducible. Hence,
Z2[x]

〈x2 + x+ 1〉
is a field.

(b) By the Division Algorithm,

x4 + x3 + 1 = (x2 + x+ 1)(x2 + 1) + x.

This equation says that x4 + x3 +1 and x differ by a multiple of x2 + x+1, so they represent the same
coset mod x2 + x+ 1.

Therefore,
(x4 + x3 + 1) + 〈x2 + x+ 1〉 = x+ 〈x2 + x+ 1〉.

(c) By the Division Algorithm, if f(x) ∈ Z2[x], then

f(x) = (x2 + x+ 1)q(x) + (ax+ b), where a, b ∈ Z2.

There are two possibilities for a and two for b, a total of 4. It follows that
Z2[x]

〈x2 + x+ 1〉
is a field with

4 elements. The elements are

0 + 〈x2 + x+ 1〉, 1 + 〈x2 + x+ 1〉, x+ 〈x2 + x+ 1〉, (x+ 1) + 〈x2 + x+ 1〉.

Here are the addition and multiplication tables for
Z2[x]

〈x2 + x+ 1〉
:

+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0
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· 0 1 x x+ 1

0 0 0 0 0

1 0 1 x x+ 1

x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

The addition table is fairly easy to understand: For example, x+(x+1) = 1, because 2x = 0 (mod 2).
For the multiplication table, take x · x as an example. x · x = x2; I apply the Division Algorithm to get

x2 = 1 · (x2 + x+ 1) + (x+ 1).

So x · x = x+ 1
(

mod x2 + x+ 1
)

.
Alternatively, you can use the fact that in the quotient ring x2+x+1 = 0 (omitting the coset notation),

so x2 = x+ 1 (remember that −1 = 1 in Zs).

Remark. In the same way, you can construct a field of order pn for any prime n and any n ≥ 1. Just take

Zp[x] and form the quotient ring
Zp[x]

〈f(x)〉
, where f(x) is an irreducible polynomial of degree n.

Example. (Computations in a quotient ring) (a) Show that
Z3[x]

〈x3 + 2x+ 1〉
is a field.

(b) How many elements are there in
Z3[x]

〈x3 + 2x+ 1〉
?

(c) Compute
[

(x2 + x+ 2) + 〈x3 + 2x+ 1〉
] [

(2x2 + 1) + 〈x3 + 2x+ 1〉
]

.

Express your answer in the form (ax2 + bx+ c) + 〈x3 + 2x+ 1〉, where a, b, c ∈ Z3.

(d) Find
[

(x2 + 1) + 〈x3 + 2x+ 1〉
]

−1
.

(a) x3 + 2x+ 1 has no roots in Z3:

x 0 1 2

x3 + 2x+ 1 (mod 3) 1 1 1

Since x3 + 2x+ 1 is a cubic, it follows that it’s irreducible. Hence,
Z3[x]

〈x3 + 2x+ 1〉
is a field.

(b) By the Division Algorithm, every element of
Z3[x]

〈x3 + 2x+ 1〉
can be written in the form

(ax2 + bx+ c) + 〈x3 + 2x+ 1〉, where a, b, c ∈ Z3.

There are 3 choices each for a, b, and c. Therefore,
Z3[x]

〈x3 + 2x+ 1〉
has 33 = 27 elements.

(c)

[

(x2 + x+ 2) + 〈x3 + 2x+ 1〉
] [

(2x2 + 1) + 〈x3 + 2x+ 1〉
]

= (2x4 + 2x3 + 2x2 + x+ 2) + 〈x3 + 2x+ 1〉.

By the Division Algorithm,

2x4 + 2x3 + 2x2 + x+ 2 = (2x+ 2)(x3 + 2x+ 1) + x2.
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Therefore,
(2x4 + 2x3 + 2x2 + x+ 2) + 〈x3 + 2x+ 1〉 = x2 + 〈x3 + 2x+ 1〉.

(d) Apply the Extended Euclidean algorithm:

x3 + 2x+ 1 - x2 + 2x+ 1

x2 + 1 x x+ 2

x+ 1 x+ 2 1

2 2x+ 2 0

(x2 + 2x+ 1)(x2 + 1)− (x+ 2)(x3 + 2x+ 1) = 2

(2x2 + x+ 2)(x2 + 1)− (2x+ 1)(x3 + 2x+ 1) = 1

Therefore,

[

(2x2 + x+ 2) + 〈x3 + 2x+ 1〉
] [

(x2 + 1) + 〈x3 + 2x+ 1〉
]

= 1 + 〈x3 + 2x+ 1〉.

Hence,
[

(x2 + 1) + 〈x3 + 2x+ 1〉
]

−1

= (2x2 + x+ 2) + 〈x3 + 2x+ 1〉.
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