Quotient Rings of Polynomial Rings

In this section, I'll look at quotient rings of polynomial rings.

Let F be a field, and suppose $p(x) \in F[x]$. $\langle p(x) \rangle$ is the set of all multiples (by polynomials) of p(x), the (principal) ideal generated by p(x). When you form the quotient ring $\frac{F[x]}{\langle p(x) \rangle}$, it is as if you've set

multiples of p(x) equal to 0.

If $a(x) \in F[x]$, then $a(x) + \langle p(x) \rangle$ is the **coset** of $\langle p(x) \rangle$ represented by a(x).

Define $a(x) = b(x) \pmod{p(x)}$ $(a(x) \text{ is congruent to } b(x) \mod p(x))$ to mean that

 $p(x) \mid a(x) - b(x).$

In words, this means that a(x) and b(x) are congruent mod p(x) if they differ by a multiple of p(x). In equation form, this says $a(x) - b(x) = k(x) \cdot p(x)$ for some $k(x) \in F[x]$, or $a(x) = b(x) + k(x) \cdot p(x)$ for some $k(x) \in F[x].$

Lemma. Let R be a commutative ring, and suppose $a(x), b(x), p(x) \in R[x]$. Then $a(x) = b(x) \pmod{p(x)}$ if and only if $a(x) + \langle p(x) \rangle = b(x) + \langle p(x) \rangle$.

Proof. Suppose $a(x) = b(x) \pmod{p(x)}$. Then $a(x) = b(x) + k(x) \cdot p(x)$ for some $k(x) \in R[x]$. Hence,

$$a(x) + \langle p(x) \rangle = b(x) + k(x) \cdot p(x) + \langle p(x) \rangle = b(x) + \langle p(x) \rangle.$$

Conversely, suppose $a(x) + \langle p(x) \rangle = b(x) + \langle p(x) \rangle$. Then

$$a(x) \in a(x) + \langle p(x) \rangle = b(x) + \langle p(x) \rangle.$$

Hence,

$$a(x) = b(x) + k(x) \cdot p(x)$$
 for some $k(x) \in R[x]$.

This means that $a(x) = b(x) \pmod{p(x)}$.

Depending on the situation, I may write $a(x) = b(x) \pmod{p(x)}$ or $a(x) + \langle p(x) \rangle = b(x) + \langle p(x) \rangle$.

Example. (A quotient ring of the rational polynomial ring) Take p(x) = x - 2 in $\mathbb{Q}[x]$. Then two polynomials are congruent mod x - 2 if they differ by a multiple of x - 2.

(a) Show that $2x^2 + 3x + 5 = x^2 + 4x + 7 \pmod{x-2}$.

(b) Find a rational number r such that $x^3 - 4x^2 + x + 11 = r \pmod{x-2}$.

(c) Prove that
$$\frac{\mathbb{Q}[x]}{\langle x-2\rangle} \approx \mathbb{Q}$$
.

(a)

$$(2x^2+3x+5) - (x^2+4x+7) = x^2 - x - 2 = (x+1)(x-2), \text{ so } 2x^2+3x+5 = x^2+4x+7 \pmod{x-2}. \square$$

(b) By the Remainder Theorem, when $f(x) = x^3 - 4x^2 + x + 11$ is divided by x - 2, the remainder is

$$f(2) = 2^3 - 4 \cdot 2^2 + 2 + 11 = 5.$$

Thus,

$$x^{3} - 4x^{2} + x + 11 = (x - 2)q(x) + 5$$

$$x^{3} - 4x^{2} + x + 11 = 5 \pmod{x - 2}$$

(c) I'll use the First Isomorphism Theorem. Define $\phi : \mathbb{Q}[x] \to \mathbb{Q}$ by

$$\phi\left(f(x)\right) = f(2).$$

That is, ϕ evaluates a polynomial at x = 2. Note that

$$\phi(f(x) + g(x)) = f(2) + g(2) = \phi(f(x)) + \phi(g(x)) \quad \text{and} \quad \phi(f(x)g(x)) = f(2)g(2) = \phi(f(x))\phi(g(x)),$$

It follows that ϕ is a ring map.

I claim that ker $\phi = \langle x - 2 \rangle$. Now $f(x) \in \ker \phi$ if and only if

$$f(2) = \phi\left(f(x)\right) = 0.$$

That is, $f(x) \in \ker \phi$ if and only if 2 is a root of f. By the Root Theorem, this is equivalent to x - 2 | f(x), which is equivalent to $f(x) \in \langle x - 2 \rangle$.

Next, I'll show that ϕ is surjective. Let $q \in \mathbb{Q}$. I can think of q as a constant polynomial, and doing so, $\phi(q) = q$. Therefore, ϕ is surjective.

Using these results,

$$\frac{\mathbb{Q}[x]}{\langle x-2\rangle} = \frac{\mathbb{Q}[x]}{\ker \phi} \approx \operatorname{im} \phi = \mathbb{Q}$$

The first equality follows from the fact that $\langle x - 2 \rangle = \ker \phi$. The isomorphism follows from the First Isomorphism Theorem. The second equality follows from the fact that ϕ is surjective.

In the last example, $\frac{F[x]}{\langle p(x) \rangle}$ was a field. The next result says that this is the case exactly when p(x) is irreducible.

Theorem. $\frac{F[x]}{\langle p(x) \rangle}$ is a field if and only if p(x) is irreducible.

Proof. Since F[x] is a commutative ring with identity, so is $\frac{F[x]}{\langle p(x) \rangle}$.

Suppose p(x) is irreducible. I need to show that $\frac{F[x]}{\langle p(x) \rangle}$ is a field. I need to show that nonzero elements are invertible.

Take a nonzero element of $\frac{F[x]}{\langle p(x) \rangle}$ — say $a(x) + \langle p(x) \rangle$, for $a(x) \in F[x]$. What does it mean for $a(x) + \langle p(x) \rangle$ to be nonzero? It means that $a(x) \notin \langle p(x) \rangle$, so $p(x) \not| a(x)$.

Now what is the greatest common divisor of a(x) and p(x)? Well, $(a(x), p(x)) \mid p(x)$, but p(x) is irreducible — its only factors are units and unit multiples of p(x).

Suppose $(a(x), p(x)) = k \cdot p(x)$, where $k \in F$ and $k \neq 0$. Then $k \cdot p(x) \mid a(x)$, i.e. $k \cdot p(x)b(x) = a(x)$ for some b(x). But then $p(x)[k \cdot b(x)] = a(x)$ shows that $p(x) \mid a(x)$, contrary to assumption.

The only other possibility is that (a(x), p(x)) = k, where $k \in F$ and $k \neq 0$. So I can find polynomials m(x), n(x), such that

$$a(x)m(x) + p(x)n(x) = k.$$

Then

$$a(x) \cdot \left(\frac{1}{k}m(x)\right) + p(x) \cdot \left(\frac{1}{k}n(x)\right) = 1.$$

Hence,

$$\begin{split} a(x) \cdot \left(\frac{1}{k}m(x)\right) + p(x) \cdot \left(\frac{1}{k}n(x)\right) + \langle p(x)\rangle &= 1 + \langle p(x)\rangle \\ a(x) \cdot \left(\frac{1}{k}m(x)\right) + \langle p(x)\rangle &= 1 + \langle p(x)\rangle \\ (a(x) + \langle p(x)\rangle) \left(\frac{1}{k}m(x) + \langle p(x)\rangle\right) &= 1 + \langle p(x)\rangle \end{split}$$

This shows that $\frac{1}{k}m(x) + \langle p(x) \rangle$ is the multiplicative inverse of $a(x) + \langle p(x) \rangle$. Therefore, $a(x) + \langle p(x) \rangle$ is invertible, and $\frac{F[x]}{\langle p(x) \rangle}$ is a field.

Going the other way, suppose that p(x) is *not* irreducible. Then I can find polynomials c(x), d(x) such that p(x) = c(x)d(x), where c(x) and d(x) both have smaller degree than p(x).

Because c(x) and d(x) have smaller degree than p(x), they're not divisible by p(x). In particular,

$$c(x) + \langle p(x) \rangle \neq 0$$
 and $d(x) + \langle p(x) \rangle \neq 0$.

But p(x) = c(x)d(x) gives

$$p(x) + \langle p(x) \rangle = c(x)d(x) + \langle p(x) \rangle$$

$$0 = (c(x) + \langle p(x) \rangle) (d(x) + \langle p(x) \rangle)$$

This shows that $\frac{F[x]}{\langle p(x) \rangle}$ has zero divisors. Therefore, it's not an integral domain — and since fields are integral domains, it can't be a field, either.

Example. (A quotient ring which is not an integral domain) Prove that $\frac{\mathbb{Q}[x]}{\langle x^2 - 1 \rangle}$ is not an integral domain by exhibiting a pair of zero divisors.

 $(x-1) + \langle x^2 - 1 \rangle$ and $(x+1) + \langle x^2 - 1 \rangle$ are zero divisors, because

$$(x-1)(x+1) = x^2 - 1 = 0 \pmod{x^2 - 1}$$
.

Example. (A quotient ring which is a field) (a) Show that $\frac{\mathbb{Q}[x]}{\langle x^2 + 2x + 2 \rangle}$ is a field.

(b) Find the inverse of $(x^3 + 1) + \langle x^2 + 2x + 2 \rangle$ in $\frac{\mathbb{Q}[x]}{\langle x^2 + 2x + 2 \rangle}$.

(a) Since $x^2 + 2x + 2 = (x + 1)^2 + 1 > 0$ for all $x \in \mathbb{Q}$, it follows that $x^2 + 2x + 2$ has no rational roots. Hence, it's irreducible, and the quotient ring is a field. \Box

$x^3 + 1$	-	$\frac{x^2}{2} - \frac{5x}{4} + \frac{3}{2}$
$x^2 + 2x + 2$	x-2	$\frac{x}{2} - \frac{1}{4}$
2x + 5	$\frac{x}{2} - \frac{1}{4}$	1

8x

13

(b) Apply the Extended Euclidean algorithm to $x^3 + 1$ and $x^2 + 2x + 2$:

13

Therefore,

$$\frac{13}{4} = \left(\frac{x^2}{2} - \frac{5x}{4} + \frac{3}{2}\right)(x^2 + 2x + 2) - \left(\frac{x}{2} - \frac{1}{4}\right)(x^3 + 1).$$

20

13

0

Hence,

$$1 = \frac{4}{13} \left(\frac{x^2}{2} - \frac{5x}{4} + \frac{3}{2} \right) (x^2 + 2x + 2) - \frac{4}{13} \left(\frac{x}{2} - \frac{1}{4} \right) (x^3 + 1).$$

Reducing mod $x^2 + 2x + 2$, I get

$$1 + \langle x^2 + 2x + 2 \rangle = -\frac{4}{13} \left(\frac{x}{2} - \frac{1}{4} \right) (x^3 + 1) + \langle x^2 + 2x + 2 \rangle$$

$$1 + \langle x^2 + 2x + 2 \rangle = \left(-\frac{4}{13} \left(\frac{x}{2} - \frac{1}{4} \right) + \langle x^2 + 2x + 2 \rangle \right) \left((x^3 + 1) + \langle x^2 + 2x + 2 \rangle \right)$$
Thus, $-\frac{4}{13} \left(\frac{x}{2} - \frac{1}{4} \right) + \langle x^2 + 2x + 2 \rangle$ is the inverse of $(x^3 + 1) + \langle x^2 + 2x + 2 \rangle$.

Example. (A field with 4 elements) (a) Prove that $\frac{\mathbb{Z}_2[x]}{\langle x^2 + x + 1 \rangle}$ is a field.

(b) Find $ax + b \in \mathbb{Z}_2[x]$ so that

$$(x^{4} + x^{3} + 1) + \langle x^{2} + x + 1 \rangle = (ax + b) + \langle x^{2} + x + 1 \rangle.$$

- (c) Construct addition and multiplication tables for $\frac{\mathbb{Z}_2[x]}{\langle x^2 + x + 1 \rangle}$.
- (a) Let $f(x) = x^2 + x + 1$. Then f(0) = 1 and f(1) = 1. Since f has no roots in \mathbb{Z}_2 , it's irreducible. Hence, $\frac{\mathbb{Z}_2[x]}{\langle x^2 + x + 1 \rangle}$ is a field. \square
- (b) By the Division Algorithm,

$$x^{4} + x^{3} + 1 = (x^{2} + x + 1)(x^{2} + 1) + x.$$

This equation says that $x^4 + x^3 + 1$ and x differ by a multiple of $x^2 + x + 1$, so they represent the same coset mod $x^2 + x + 1$.

Therefore,

$$(x^4 + x^3 + 1) + \langle x^2 + x + 1 \rangle = x + \langle x^2 + x + 1 \rangle.$$

(c) By the Division Algorithm, if $f(x) \in \mathbb{Z}_2[x]$, then

$$f(x) = (x^2 + x + 1)q(x) + (ax + b)$$
, where $a, b \in \mathbb{Z}_2$.

There are two possibilities for a and two for b, a total of 4. It follows that $\frac{\mathbb{Z}_2[x]}{\langle x^2 + x + 1 \rangle}$ is a field with 4 elements. The elements are

$$0 + \langle x^2 + x + 1 \rangle, 1 + \langle x^2 + x + 1 \rangle, x + \langle x^2 + x + 1 \rangle, (x + 1) + \langle x^2 + x + 1 \rangle.$$

Here are the addition and multiplication tables for $\frac{\mathbb{Z}_2[x]}{\langle x^2 + x + 1 \rangle}$:

+	0	1	x	x + 1
0	0	1	x	x + 1
1	1	0	x + 1	x
x	x	x + 1	0	1
x + 1	x + 1	x	1	0

•	0	1	x	x + 1
0	0	0	0	0
1	0	1	x	x + 1
x	0	x	x + 1	1
x+1	0	x + 1	1	x

The addition table is fairly easy to understand: For example, x + (x + 1) = 1, because $2x = 0 \pmod{2}$. For the multiplication table, take $x \cdot x$ as an example. $x \cdot x = x^2$; I apply the Division Algorithm to get

$$x^{2} = 1 \cdot (x^{2} + x + 1) + (x + 1)$$

So $x \cdot x = x + 1 \pmod{x^2 + x + 1}$.

Alternatively, you can use the fact that in the quotient ring $x^2 + x + 1 = 0$ (omitting the coset notation), so $x^2 = x + 1$ (remember that -1 = 1 in \mathbb{Z}_s). \square

Remark. In the same way, you can construct a field of order p^n for any prime n and any $n \ge 1$. Just take $\mathbb{Z}_p[x]$ and form the quotient ring $\frac{\mathbb{Z}_p[x]}{\langle f(x) \rangle}$, where f(x) is an irreducible polynomial of degree n.

Example. (Computations in a quotient ring) (a) Show that $\frac{\mathbb{Z}_3[x]}{\langle x^3 + 2x + 1 \rangle}$ is a field.

- (b) How many elements are there in $\frac{\mathbb{Z}_3[x]}{\langle x^3 + 2x + 1 \rangle}$?
- (c) Compute

$$\left[(x^2 + x + 2) + \langle x^3 + 2x + 1 \rangle \right] \left[(2x^2 + 1) + \langle x^3 + 2x + 1 \rangle \right].$$

Express your answer in the form $(ax^2 + bx + c) + \langle x^3 + 2x + 1 \rangle$, where $a, b, c \in \mathbb{Z}_3$.

- (d) Find $[(x^2+1) + \langle x^3 + 2x + 1 \rangle]^{-1}$.
- (a) $x^3 + 2x + 1$ has no roots in \mathbb{Z}_3 :

x	0	1	2
$x^3 + 2x + 1 \pmod{3}$	1	1	1

Since $x^3 + 2x + 1$ is a cubic, it follows that it's irreducible. Hence, $\frac{\mathbb{Z}_3[x]}{\langle x^3 + 2x + 1 \rangle}$ is a field. \Box

(b) By the Division Algorithm, every element of $\frac{\mathbb{Z}_3[x]}{\langle x^3 + 2x + 1 \rangle}$ can be written in the form

$$(ax^2 + bx + c) + \langle x^3 + 2x + 1 \rangle$$
, where $a, b, c \in \mathbb{Z}_3$

There are 3 choices each for a, b, and c. Therefore, $\frac{\mathbb{Z}_3[x]}{\langle x^3 + 2x + 1 \rangle}$ has $3^3 = 27$ elements.

(c)

$$\left[(x^2 + x + 2) + \langle x^3 + 2x + 1 \rangle \right] \left[(2x^2 + 1) + \langle x^3 + 2x + 1 \rangle \right] = (2x^4 + 2x^3 + 2x^2 + x + 2) + \langle x^3 + 2x + 1 \rangle.$$

By the Division Algorithm,

$$2x^{4} + 2x^{3} + 2x^{2} + x + 2 = (2x + 2)(x^{3} + 2x + 1) + x^{2}$$

Therefore,

$$(2x^4 + 2x^3 + 2x^2 + x + 2) + \langle x^3 + 2x + 1 \rangle = x^2 + \langle x^3 + 2x + 1 \rangle. \quad \Box$$

(d) Apply the Extended Euclidean algorithm:

$x^3 + 2x + 1$	-	$x^2 + 2x + 1$
$x^2 + 1$	x	x+2
x + 1	x+2	1
2	2x + 2	0

$(x^{2} + 2x + 1)(x^{2} + 1) - (x + 2)(x^{3} + 2x + 1) = 2$	2
$(2x^{2} + x + 2)(x^{2} + 1) - (2x + 1)(x^{3} + 2x + 1) = 1$	-

Therefore,

$$\left[(2x^{2} + x + 2) + \langle x^{3} + 2x + 1 \rangle \right] \left[(x^{2} + 1) + \langle x^{3} + 2x + 1 \rangle \right] = 1 + \langle x^{3} + 2x + 1 \rangle.$$

Hence,

$$\left[(x^2 + 1) + \langle x^3 + 2x + 1 \rangle \right]^{-1} = (2x^2 + x + 2) + \langle x^3 + 2x + 1 \rangle.$$