Quotient Rings

Let R be a ring, and let I be a (two-sided) ideal. Considering just the operation of addition, R is a group and I is a subgroup. In fact, since R is an *abelian* group under addition, I is a *normal* subgroup, and the quotient group $\frac{R}{I}$ is defined. Addition of cosets is defined by *adding* coset representatives:

$$(a+I) + (b+I) = (a+b) + I.$$

The zero coset is 0 + I = I, and the additive inverse of a coset is given by -(a + I) = (-a) + I.

However, R also comes with a multiplication, and it's natural to ask whether you can turn $\frac{R}{I}$ into a ring by *multiplying* coset representatives:

$$(a+I) \cdot (b+I) = ab + I.$$

I need to check that this operation is well-defined, and that the ring axioms are satisfied. In fact, everything works, and you'll see in the proof that it depends on the fact that I is an *ideal*. Specifically, it depends on the fact that I is closed under multiplication by elements of R.

By the way, I'll sometimes write " $\frac{R}{I}$ " and sometimes "R/I"; they mean the same thing.

Theorem. If I is a two-sided ideal in a ring R, then R/I has the structure of a ring under coset addition and multiplication.

Proof. Suppose that I is a two-sided ideal in R. Let $r, s \in I$.

Coset addition is well-defined, because R is an abelian group and I a normal subgroup under addition. I proved that coset addition was well-defined when I constructed quotient groups.

I need to show that coset multiplication is well-defined:

$$(r+I)(s+I) = rs + I.$$

As before, suppose that

$$r + I = r' + I$$
, so $r = r' + a$, $a \in I$
 $s + I = s' + I$, so $s = s' + b$, $b \in I$

Then

$$(r+I)(s+I) = rs + I = (r'+a)(s'+b) + I = r's' + r'b + as' + ab + I = r's' + I = (r'+I)(s'+I).$$

The next-to-last equality is derived as follows: $r'b + as' + ab \in I$, because I is an ideal; hence r'b + as' + ab + I = I. Note that this uses the multiplication axiom for an ideal; in a sense, it explains why the multiplication axiom requires that an ideal be closed under multiplication by ring elements on the left and right.

Thus, coset multiplication is well-defined.

Verification of the ring axioms is easy but tedious: It reduces to the axioms for R.

For instance, suppose I want to verify associativity of multiplication. Take $r, s, t \in \mathbb{R}$. Then

$$((r+I)(s+I))(t+I) = (rs+I)(t+I) = (rs)t + I = r(st) + I = (r+I)(st+I) = (r+I)((s+I)(t+I)) .$$

(Notice how I used associativity of multiplication in R in the middle of the proof.) The proofs of the other axioms are similar. \Box

Definition. If R is a ring and I is a two-sided ideal, the **quotient ring** of R mod I is the group of cosets $\frac{R}{I}$ with the operations of coset addition and coset multiplication.

Proposition. Let R be a ring, and let I be an ideal

(a) If R is a commutative ring, so is R/I.

(b) If R has a multiplicative identity 1, then 1 + I is a multiplicative identity for R/I. In this case, if $r \in R$ is a unit, then so is r + I, and $(r + I)^{-1} = r^{-1} + I$.

Proof. (a) Let $r + I, s + I \in R/I$. Since R is commutative,

$$(r+I)(s+I) = rs + I = sr + I = (s+I)(r+I).$$

Therefore, R/I is commutative.

(b) Suppose R has a multiplicative identity 1. Let $r \in R$. Then

$$(r+I)(1+I) = r \cdot 1 + I = r + I$$
 and $(1+I)(r+I) = 1 \cdot r + I = r + I$.

Therefore, 1 + I is the identity of R/I. If $r \in R$ is a unit, then

$$(r^{-1}+I)(r+I) = r^{-1}r + I = 1 + I$$
 and $(r+I)(r^{-1}+I) = rr^{-1} + I = 1 + I.$

Therefore, $(r+I)^{-1} = r^{-1} + I$. \Box

Example. (A quotient ring of the integers) The set of even integers $\langle 2 \rangle = 2\mathbb{Z}$ is an ideal in \mathbb{Z} . Form the quotient ring $\frac{\mathbb{Z}}{2\mathbb{Z}}$.

Construct the addition and multiplication tables for the quotient ring.

Here are some cosets:

$$2 + 2\mathbb{Z}, -15 + 2\mathbb{Z}, 841 + 2\mathbb{Z}$$

But two cosets $a + 2\mathbb{Z}$ and $b + 2\mathbb{Z}$ are the same exactly when a and b differ by an even integer. Every even integer differs from 0 by an even integer. Every odd integer differs from 1 by an even integer. So there are really only two cosets (up to renaming): $0 + 2\mathbb{Z} = 2\mathbb{Z}$ and $1 + 2\mathbb{Z}$.

Here are the addition and multiplication tables:

+	$0+2\mathbb{Z}$	$1+2\mathbb{Z}$	×
$0+2\mathbb{Z}$	$0+2\mathbb{Z}$	$1+2\mathbb{Z}$	$0+2\mathbb{Z}$
$1+2\mathbb{Z}$	$1+2\mathbb{Z}$	$0+2\mathbb{Z}$	$1+2\mathbb{Z}$

×	$0+2\mathbb{Z}$	$1+2\mathbb{Z}$
$0+2\mathbb{Z}$	$0+2\mathbb{Z}$	$0+2\mathbb{Z}$
$1+2\mathbb{Z}$	$0+2\mathbb{Z}$	$1+2\mathbb{Z}$

You can see that $\frac{\mathbb{Z}}{2\mathbb{Z}}$ is isomorphic to \mathbb{Z}_2 .

In general, $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is isomorphic to \mathbb{Z}_n . I've been using " \mathbb{Z}_n " informally to mean the set $\{0, 1, \ldots, n-1\}$ with addition and multiplication mod n, and taking for granted that the usual ring axioms hold. This example gives a formal contruction of \mathbb{Z}_n as the quotient ring $\frac{\mathbb{Z}}{n\mathbb{Z}}$. \Box

Example. $\mathbb{Z}_3[x]$ is the ring of polynomials with coefficients in \mathbb{Z}_3 . Consider the ideal $\langle 2x^2 + x + 2 \rangle$.

(a) How many elements are in the quotient ring
$$\frac{\mathbb{Z}_3[x]}{\langle 2x^2 + x + 2 \rangle}$$
?

- - - 1

(b) Reduce the following product in $\frac{\mathbb{Z}_3[x]}{\langle 2x^2 + x + 2 \rangle}$ to the form $(ax + b) + \langle 2x^2 + x + 2 \rangle$:

$$(2x + 1 + \langle 2x^2 + x + 2 \rangle) \cdot (x + 1 + \langle 2x^2 + x + 2 \rangle).$$

(c) Find $[x + 2 + \langle 2x^2 + x + 2 \rangle]^{-1}$ in $\frac{\mathbb{Z}_3[x]}{\langle 2x^2 + x + 2 \rangle}$.

The ring $\frac{\mathbb{Z}_3[x]}{\langle 2x^2 + x + 2 \rangle}$ is analogous to $\mathbb{Z}_n = \frac{\mathbb{Z}}{\langle n \rangle}$. In the case of \mathbb{Z}_n , you do computations mod n: To "simplify", you divide the result of a computation by the modulus n and take the remainder. In $\frac{\mathbb{Z}_3[x]}{\langle 2x^2 + x + 2 \rangle}$, the polynomial $2x^2 + x + 2$ acts like the "modulus". To do computations in $\frac{\mathbb{Z}_3[x]}{\langle 2x^2 + x + 2 \rangle}$, you divide the result of a computation by $2x^2 + x + 2$ and take the remainder.

(a) By the Division Algorithm, any $f(x) \in \mathbb{Z}_3[x]$ can be written as

$$f(x) = (2x^2 + x + 2)q(x) + r(x)$$
, where $\deg r(x) < \deg(2x^2 + x + 2)$.

This means that r(x) = ax + b, where $a, b \in \mathbb{Z}_3$. Then

$$f(x) + \langle 2x^2 + x + 2 \rangle = [(2x^2 + x + 2)q(x) + r(x)] + \langle 2x^2 + x + 2 \rangle = (ax + b) + \langle 2x^2 + x + 2 \rangle.$$

Since there are 3 choices for a and 3 choices for b, there are 9 cosets. \Box

(b) First, multiply the coset representatives:

$$(2x+1)(x+1) = 2x^2 + 1.$$

Dividing $2x^2 + 1$ by $2x^2 + x + 2$, I get

$$2x^{2} + 1 = (2x^{2} + x + 2)(1) + (2x + 2).$$

Then

$$2x^{2} + 1 + \langle 2x^{2} + x + 2 \rangle = [(2x^{2} + x + 2)(1) + (2x + 2)] + \langle 2x^{2} + x + 2 \rangle = 2x + 2 + \langle 2x^{2} + x + 2 \rangle. \quad \Box$$

(c) To find multiplicative inverses in \mathbb{Z}_n , you use the Extended Euclidean Algorithm. The same idea works in quotient rings of polynomial rings.

	$2x^2 + x + 2$	-	2x	
	x+2	2x	1	
	2	2x + 1	0	
	$(1)(2x^2 + x + 2)$) - (2x)(x +	2) = 2	
	$(1)(2x^2 + x + 1)$	(2) + (x)(x + x)(x +	2) = 2	
	$(2)(2x^2 + x + 2)$) + (2x)(x +	2) = 1	
$(2)(2x^2 + x +$	(2) + (2x)(x+2) -	$+\langle 2x^2 + x +$	$2\rangle = 1 +$	$\langle 2x^2 + x + 2 \rangle$
	(2x)(x+2) -	$+\langle 2x^2 + x +$	$2\rangle = 1 +$	$\langle 2x^2 + x + 2 \rangle$

Thus,

$$[x + 2 + \langle 2x^2 + x + 2 \rangle]^{-1} = 2x + \langle 2x^2 + x + 2 \rangle. \quad \Box$$

Example. (a) List the elements of the cosets of $\langle (2,2) \rangle$ in the ring $\mathbb{Z}_4 \times \mathbb{Z}_6$.

(b) Is the quotient ring $\frac{\mathbb{Z}_4 \times \mathbb{Z}_6}{\langle (2,2) \rangle}$ an integral domain?

(a) If x is an element of a ring R, the ideal $\langle x \rangle$ consists of all multiples of x by elements of R. It is not necessarily the same as the additive subgroup generated by x, which is

$$\{\ldots, -3x, -2x, -x, 0, x, 2x, 3x, \ldots\}$$

In this example, the additive subgroup generated by (2,2) is

$$\{(0,0), (2,2), (0,4), (2,0), (0,2), (2,4)\}.$$

As usual, I get it by starting with the zero element (0,0) and the generator (2,2), then adding (2,2) until I get back to (0,0).

This set is *contained* in the ideal $\langle (2,2) \rangle$; I need to check whether it is *the same* as the ideal. If $(a,b) \in \mathbb{Z}_4 \times \mathbb{Z}_6$, then

$$(a,b) \cdot (2,2) = (2a,2b).$$

Thus, an element of the ideal $\langle (2,2) \rangle$ consists of a pair (2a, 2b), where each component is even. There are two even elements in \mathbb{Z}_4 (namely 0 and 2) and 3 even elements in \mathbb{Z}_6 (namely 0, 2, and 4), so there are $2 \cdot 3 = 6$ such pairs. Thus, the ideal $\langle (2,2) \rangle$ has a maximum of 6 elements. Since the additive subgroup above already has 6 elements, it must be the same as the ideal.

I can list the elements of the cosets of the ideal as I would for subgroups.

$$\begin{split} \langle (2,2) \rangle &= \{ (0,0), (2,2), (0,4), (2,0), (0,2), (2,4) \} \\ (0,1) &+ \langle (2,2) \rangle &= \{ (0,1), (2,3), (0,5), (2,1), (0,3), (2,5) \} \\ (1,0) &+ \langle (2,2) \rangle &= \{ (1,0), (3,2), (1,4), (3,0), (1,2), (3,4) \} \\ (1,1) &+ \langle (2,2) \rangle &= \{ (1,1), (3,3), (1,5), (3,1), (1,3), (3,5) \} \end{split}$$

(b) Note that

$$[(0,1) + \langle (2,2) \rangle][(1,0) + \langle (2,2) \rangle] = \langle (2,2) \rangle.$$

Hence, $\frac{\mathbb{Z}_4 \times \mathbb{Z}_6}{\langle (2,2) \rangle}$ is not an integral domain. \Box

Example. In the ring $\mathbb{Z}_2 \times \mathbb{Z}_{10}$, consider the principal ideal $\langle (1,5) \rangle$.

- (a) List the elements of $\langle (1,5) \rangle$.
- (b) List the elements of the cosets of $\langle (1,5) \rangle$.
- (c) Is the quotient ring $\frac{\mathbb{Z}_2 \times \mathbb{Z}_{10}}{\langle (1,5) \rangle}$ a field?

(a) Note that the additive subgroup generated by (1,5) has only two elements. It's not the same as the ideal generated by (1,5), so I can't find the elements of the ideal by taking additive multiples of (1,5). I'll find the elements of the ideal $\langle (1,5) \rangle$ by multiplying (1,5) by the elements of $\mathbb{Z}_2 \times \mathbb{Z}_{10}$, then throwing out duplicates. The computation is routine, if a bit tedious.

element	(0, 0)	(0, 1)	(0, 2)	(0,3)	(0, 4)
$\cdot(1,5)$	(0,0)	(0, 5)	(0,0)	(0,5)	(0, 0)

element	(0,5)	(0,6)	(0,7)	(0,8)	(0,9)
(1,5)	(0,5)	(0,0)	(0,5)	(0,0)	(0,5)
element	(1,0)	(1,1)	(1,2)	(1,3)	(1,4)
(1,5)	(1,0)	(1,5)	(1,0)	(1,5)	(1, 0)
element	(1,5)	(1, 6)	(1,7)	(1,8)	(1,9)
(1,5)	(1,5)	(1,0)	(1,5)	(1,0)	(1,5)

Removing duplicates, I have

$$\langle (1,5)\rangle = \{(0,0), (0,5), (1,0), (1,5)\}. \quad \Box$$

(b) Since the ideal has 4 elements and the ring has 20, there must be 5 cosets.

 $\langle (1,5) \rangle = \{ (0,0), (0,5), (1,0), (1,5) \}$ $(0,1) + \langle (1,5) \rangle = \{(0,1), (0,6), (1,1), (1,6)\}$ $(0,2) + \langle (1,5) \rangle = \{(0,2), (0,7), (1,2), (1,7)\}$ $(0,3) + \langle (1,5) \rangle = \{(0,3), (0,8), (1,3), (1,8)\}$ $(0,4) + \langle (1,5) \rangle = \{(0,4), (0,9), (1,4), (1,9)\}$

(c) Note that $(0,1) + \langle (1,5) \rangle$ is the identity.

$$[(0,2) + \langle (1,5) \rangle][(0,3) + \langle (1,5) \rangle] = (0,1) + \langle (1,5) \rangle.$$

$$[(0,4) + \langle (1,5) \rangle][(0,4) + \langle (1,5) \rangle] = (0,1) + \langle (1,5) \rangle.$$

Since every nonzero coset has a multiplicative inverse, the quotient ring is a field. \Box