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Quotient Rings

Let R be a ring, and let I be a (two-sided) ideal. Considering just the operation of addition, R is a
group and I is a subgroup. In fact, since R is an abelian group under addition, I is a normal subgroup, and

the quotient group
R

I
is defined. Addition of cosets is defined by adding coset representatives:

(a+ I) + (b+ I) = (a+ b) + I.

The zero coset is 0 + I = I, and the additive inverse of a coset is given by −(a+ I) = (−a) + I.

However, R also comes with a multiplication, and it’s natural to ask whether you can turn
R

I
into a

ring by multiplying coset representatives:

(a+ I) · (b+ I) = ab+ I.

I need to check that that this operation is well-defined, and that the ring axioms are satisfied. In fact,
everything works, and you’ll see in the proof that it depends on the fact that I is an ideal. Specifically, it
depends on the fact that I is closed under multiplication by elements of R.

By the way, I’ll sometimes write “
R

I
” and sometimes “R/I”; they mean the same thing.

Theorem. If I is a two-sided ideal in a ring R, then R/I has the structure of a ring under coset addition
and multiplication.

Proof. Suppose that I is a two-sided ideal in R. Let r, s ∈ I.
Coset addition is well-defined, because R is an abelian group and I a normal subgroup under addition.

I proved that coset addition was well-defined when I constructed quotient groups.
I need to show that coset multiplication is well-defined:

(r + I)(s+ I) = rs+ I.

As before, suppose that
r + I = r′ + I, so r = r′ + a, a ∈ I

s+ I = s′ + I, so s = s′ + b, b ∈ I

Then

(r + I)(s+ I) = rs+ I = (r′ + a)(s′ + b) + I = r′s′ + r′b+ as′ + ab+ I = r′s′ + I = (r′ + I)(s′ + I).

The next-to-last equality is derived as follows: r′b + as′ + ab ∈ I, because I is an ideal; hence r′b +
as′ + ab + I = I. Note that this uses the multiplication axiom for an ideal; in a sense, it explains why the
multiplication axiom requires that an ideal be closed under multiplication by ring elements on the left and

right.
Thus, coset multiplication is well-defined.
Verification of the ring axioms is easy but tedious: It reduces to the axioms for R.
For instance, suppose I want to verify associativity of multiplication. Take r, s, t ∈ R. Then

((r + I)(s+ I)) (t+ I) = (rs+ I)(t+ I) = (rs)t+ I = r(st) + I = (r + I)(st+ I) = (r + I) ((s+ I)(t+ I)) .

(Notice how I used associativity of multiplication in R in the middle of the proof.) The proofs of the
other axioms are similar.

Definition. If R is a ring and I is a two-sided ideal, the quotient ring of R mod I is the group of cosets
R

I
with the operations of coset addition and coset multiplication.
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Proposition. Let R be a ring, and let I be an ideal

(a) If R is a commutative ring, so is R/I.

(b) If R has a multiplicative identity 1, then 1 + I is a multiplicative identity for R/I. In this case, if
r ∈ R is a unit, then so is r + I, and (r + I)−1 = r−1 + I.

Proof. (a) Let r + I, s+ I ∈ R/I. Since R is commutative,

(r + I)(s+ I) = rs+ I = sr + I = (s+ I)(r + I).

Therefore, R/I is commutative.

(b) Suppose R has a multiplicative identity 1. Let r ∈ R. Then

(r + I)(1 + I) = r · 1 + I = r + I and (1 + I)(r + I) = 1 · r + I = r + I.

Therefore, 1 + I is the identity of R/I.
If r ∈ R is a unit, then

(r−1 + I)(r + I) = r−1r + I = 1 + I and (r + I)(r−1 + I) = rr−1 + I = 1 + I.

Therefore, (r + I)−1 = r−1 + I.

Example. (A quotient ring of the integers) The set of even integers 〈2〉 = 2Z is an ideal in Z. Form

the quotient ring
Z

2Z
.

Construct the addition and multiplication tables for the quotient ring.

Here are some cosets:
2 + 2Z, −15 + 2Z, 841 + 2Z.

But two cosets a + 2Z and b + 2Z are the same exactly when a and b differ by an even integer. Every
even integer differs from 0 by an even integer. Every odd integer differs from 1 by an even integer. So there
are really only two cosets (up to renaming): 0 + 2Z = 2Z and 1 + 2Z.

Here are the addition and multiplication tables:

+ 0 + 2Z 1 + 2Z

0 + 2Z 0 + 2Z 1 + 2Z

1 + 2Z 1 + 2Z 0 + 2Z

× 0 + 2Z 1 + 2Z

0 + 2Z 0 + 2Z 0 + 2Z

1 + 2Z 0 + 2Z 1 + 2Z

You can see that
Z

2Z
is isomorphic to Z2.

In general,
Z

nZ
is isomorphic to Zn. I’ve been using “Zn” informally to mean the set {0, 1, . . . , n − 1}

with addition and multiplication mod n, and taking for granted that the usual ring axioms hold. This

example gives a formal contruction of Zn as the quotient ring
Z

nZ
.

Example. Z3[x] is the ring of polynomials with coefficients in Z3. Consider the ideal 〈2x2 + x+ 2〉.

(a) How many elements are in the quotient ring
Z3[x]

〈2x2 + x+ 2〉
?
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(b) Reduce the following product in
Z3[x]

〈2x2 + x+ 2〉
to the form (ax+ b) + 〈2x2 + x+ 2〉:

(2x+ 1 + 〈2x2 + x+ 2〉) · (x+ 1 + 〈2x2 + x+ 2〉).

(c) Find [x+ 2 + 〈2x2 + x+ 2〉]−1 in
Z3[x]

〈2x2 + x+ 2〉
.

The ring
Z3[x]

〈2x2 + x+ 2〉
is analogous to Zn =

Z

〈n〉
. In the case of Zn, you do computations mod

n: To “simplify”, you divide the result of a computation by the modulus n and take the remainder. In
Z3[x]

〈2x2 + x+ 2〉
, the polynomial 2x2 + x + 2 acts like the “modulus”. To do computations in

Z3[x]

〈2x2 + x+ 2〉
,

you divide the result of a computation by 2x2 + x+ 2 and take the remainder.

(a) By the Division Algorithm, any f(x) ∈ Z3[x] can be written as

f(x) = (2x2 + x+ 2)q(x) + r(x), where deg r(x) < deg(2x2 + x+ 2).

This means that r(x) = ax+ b, where a, b ∈ Z3. Then

f(x) + 〈2x2 + x+ 2〉 = [(2x2 + x+ 2)q(x) + r(x)] + 〈2x2 + x+ 2〉 = (ax+ b) + 〈2x2 + x+ 2〉.

Since there are 3 choices for a and 3 choices for b, there are 9 cosets.

(b) First, multiply the coset representatives:

(2x+ 1)(x+ 1) = 2x2 + 1.

Dividing 2x2 + 1 by 2x2 + x+ 2, I get

2x2 + 1 = (2x2 + x+ 2)(1) + (2x+ 2).

Then

2x2 + 1 + 〈2x2 + x+ 2〉 = [(2x2 + x+ 2)(1) + (2x+ 2)] + 〈2x2 + x+ 2〉 = 2x+ 2 + 〈2x2 + x+ 2〉.

(c) To find multiplicative inverses in Zn, you use the Extended Euclidean Algorithm. The same idea works
in quotient rings of polynomial rings.

2x2 + x+ 2 - 2x

x+ 2 2x 1

2 2x+ 1 0

(1)(2x2 + x+ 2)− (2x)(x+ 2) = 2

(1)(2x2 + x+ 2) + (x)(x+ 2) = 2

(2)(2x2 + x+ 2) + (2x)(x+ 2) = 1

(2)(2x2 + x+ 2) + (2x)(x+ 2) + 〈2x2 + x+ 2〉 = 1 + 〈2x2 + x+ 2〉

(2x)(x+ 2) + 〈2x2 + x+ 2〉 = 1 + 〈2x2 + x+ 2〉

Thus,
[x+ 2 + 〈2x2 + x+ 2〉]−1 = 2x+ 〈2x2 + x+ 2〉.
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Example. (a) List the elements of the cosets of 〈(2, 2)〉 in the ring Z4 × Z6.

(b) Is the quotient ring
Z4 × Z6

〈(2, 2)〉
an integral domain?

(a) If x is an element of a ring R, the ideal 〈x〉 consists of all multiples of x by elements of R. It is not
necessarily the same as the additive subgroup generated by x, which is

{. . . ,−3x,−2x,−x, 0, x, 2x, 3x, . . .}.

In this example, the additive subgroup generated by (2, 2) is

{(0, 0), (2, 2), (0, 4), (2, 0), (0, 2), (2, 4)}.

As usual, I get it by starting with the zero element (0, 0) and the generator (2, 2), then adding (2, 2)
until I get back to (0, 0).

This set is contained in the ideal 〈(2, 2)〉; I need to check whether it is the same as the ideal.
If (a, b) ∈ Z4 × Z6, then

(a, b) · (2, 2) = (2a, 2b).

Thus, an element of the ideal 〈(2, 2)〉 consists of a pair (2a, 2b), where each component is even. There
are two even elements in Z4 (namely 0 and 2) and 3 even elements in Z6 (namely 0, 2, and 4), so there are
2 · 3 = 6 such pairs. Thus, the ideal 〈(2, 2)〉 has a maximum of 6 elements. Since the additive subgroup
above already has 6 elements, it must be the same as the ideal.

I can list the elements of the cosets of the ideal as I would for subgroups.

〈(2, 2)〉 = {(0, 0), (2, 2), (0, 4), (2, 0), (0, 2), (2, 4)}

(0, 1) + 〈(2, 2)〉 = {(0, 1), (2, 3), (0, 5), (2, 1), (0, 3), (2, 5)}

(1, 0) + 〈(2, 2)〉 = {(1, 0), (3, 2), (1, 4), (3, 0), (1, 2), (3, 4)}

(1, 1) + 〈(2, 2)〉 = {(1, 1), (3, 3), (1, 5), (3, 1), (1, 3), (3, 5)}

(b) Note that

[(0, 1) + 〈(2, 2)〉][(1, 0) + 〈(2, 2)〉] = 〈(2, 2)〉.

Hence,
Z4 × Z6

〈(2, 2)〉
is not an integral domain.

Example. In the ring Z2 × Z10, consider the principal ideal 〈(1, 5)〉.

(a) List the elements of 〈(1, 5)〉.

(b) List the elements of the cosets of 〈(1, 5)〉.

(c) Is the quotient ring
Z2 × Z10

〈(1, 5)〉
a field?

(a) Note that the additive subgroup generated by (1, 5) has only two elements. It’s not the same as the
ideal generated by (1, 5), so I can’t find the elements of the ideal by taking additive multiples of (1, 5). I’ll
find the elements of the ideal 〈(1, 5)〉 by multiplying (1, 5) by the elements of Z2 × Z10, then throwing out
duplicates. The computation is routine, if a bit tedious.

element (0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

·(1, 5) (0, 0) (0, 5) (0, 0) (0, 5) (0, 0)
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element (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

·(1, 5) (0, 5) (0, 0) (0, 5) (0, 0) (0, 5)

element (1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

·(1, 5) (1, 0) (1, 5) (1, 0) (1, 5) (1, 0)

element (1, 5) (1, 6) (1, 7) (1, 8) (1, 9)

·(1, 5) (1, 5) (1, 0) (1, 5) (1, 0) (1, 5)

Removing duplicates, I have

〈(1, 5)〉 = {(0, 0), (0, 5), (1, 0), (1, 5)}.

(b) Since the ideal has 4 elements and the ring has 20, there must be 5 cosets.

〈(1, 5)〉 = {(0, 0), (0, 5), (1, 0), (1, 5)}

(0, 1) + 〈(1, 5)〉 = {(0, 1), (0, 6), (1, 1), (1, 6)}

(0, 2) + 〈(1, 5)〉 = {(0, 2), (0, 7), (1, 2), (1, 7)}

(0, 3) + 〈(1, 5)〉 = {(0, 3), (0, 8), (1, 3), (1, 8)}

(0, 4) + 〈(1, 5)〉 = {(0, 4), (0, 9), (1, 4), (1, 9)}

(c) Note that (0, 1) + 〈(1, 5)〉 is the identity.

[(0, 2) + 〈(1, 5)〉][(0, 3) + 〈(1, 5)〉] = (0, 1) + 〈(1, 5)〉.

[(0, 4) + 〈(1, 5)〉][(0, 4) + 〈(1, 5)〉] = (0, 1) + 〈(1, 5)〉.

Since every nonzero coset has a multiplicative inverse, the quotient ring is a field.
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