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Quotient Rings
Let R be a ring, and let I be a (two-sided) ideal. Considering just the operation of addition, R is a
group and [ is a subgroup. In fact, since R is an abelian group under addition, I is a normal subgroup, and

R
the quotient group T is defined. Addition of cosets is defined by adding coset representatives:

(@a+ 1)+ (b+1)=(a+b)+1.

The zero coset is 0+ I = I, and the additive inverse of a coset is given by —(a + I) = (—a) + I.

However, R also comes with a multiplication, and it’s natural to ask whether you can turn T into a

ring by multiplying coset representatives:
(a+1I)-(b+1)=uab+ 1.

I need to check that that this operation is well-defined, and that the ring axioms are satisfied. In fact,
everything works, and you’ll see in the proof that it depends on the fact that I is an ideal. Specifically, it
depends on the fact that I is closed under multiplication by elements of R.

« ”

By the way, I'll sometimes write T and sometimes “R/I”; they mean the same thing.

Theorem. If I is a two-sided ideal in a ring R, then R/I has the structure of a ring under coset addition
and multiplication.

Proof. Suppose that I is a two-sided ideal in R. Let r,s € I.

Coset addition is well-defined, because R is an abelian group and I a normal subgroup under addition.
I proved that coset addition was well-defined when I constructed quotient groups.

I need to show that coset multiplication is well-defined:

(r+D(s+1)=rs+1I
As before, suppose that
r+I=7r"4+1 so r=1r"4+a, acl
s+I1=s+1I so s=s+b bel
Then

r+D(s+D)=rs+I="+a)(s+b)+I=r's+r'b+as’+ab+T=7r"s'+T= " +1I)+1).

The next-to-last equality is derived as follows: 7'b + as’ + ab € I, because I is an ideal; hence r'b +
as’ +ab+ I = I. Note that this uses the multiplication axiom for an ideal; in a sense, it explains why the
multiplication axiom requires that an ideal be closed under multiplication by ring elements on the left and
right.

Thus, coset multiplication is well-defined.

Verification of the ring axioms is easy but tedious: It reduces to the axioms for R.

For instance, suppose I want to verify associativity of multiplication. Take r,s,t € R. Then

(r+D(s+D))Et+D)=@s+ D+ =(rs)t+I=r(st)+I=r+D(st+1)=+1)((s+)t+1)).

(Notice how I used associativity of multiplication in R in the middle of the proof.) The proofs of the
other axioms are similar. 0

Definition. If R is a ring and [ is a two-sided ideal, the quotient ring of R mod I is the group of cosets

T with the operations of coset addition and coset multiplication.



Proposition. Let R be a ring, and let I be an ideal
(a) If R is a commutative ring, so is R/I.

(b) If R has a multiplicative identity 1, then 14 I is a multiplicative identity for R/I. In this case, if
r € Ris a unit, then soisr + I, and (r+1)"' =r~1 + 1.

Proof. (a) Let r+ I,s+ I € R/I. Since R is commutative,
(r+D(s+D)=rs+I=sr+1=(s+I)(r+1).

Therefore, R/I is commutative.

(b) Suppose R has a multiplicative identity 1. Let r € R. Then
(r+DA+0H=r-1+I=r+1 and 14+DHr+DH)=1-r+I=r+1.

Therefore, 1 + I is the identity of R/I.
If r € R is a unit, then

(r '+ Dir+D=rtr+I=1+1 and (r+DEr '+ =rmt+I=1+1

Therefore, (r+ 1)~ =r="1+1. 0O

Example. (A quotient ring of the integers) The set of even integers (2) = 27Z is an ideal in Z. Form
the quotient ring —.

Construct the addition and multiplication tables for the quotient ring.

Here are some cosets:
2427, —15+2Z, 841+ 2Z.

But two cosets a + 2Z and b + 27 are the same exactly when a and b differ by an even integer. Every
even integer differs from 0 by an even integer. Every odd integer differs from 1 by an even integer. So there
are really only two cosets (up to renaming): 0+ 2Z = 2Z and 1 + 2Z.

Here are the addition and multiplication tables:

+ 0+2Z 1427 X 0+2Z 1427
0+2Z 0+2Z 1422 0+2Z 0+2Z 0+2Z
1427 1422 0+ 27 1422 0+2Z 1427
7 . . .
You can see that 27 is isomorphic to Zs.
In general, — is isomorphic to Z,,. I've been using “Z,” informally to mean the set {0,1,...,n — 1}

n
with addition and multiplication mod n, and taking for granted that the usual ring axioms hold. This

example gives a formal contruction of Z,, as the quotient ring 7
n

Example. Zs[z] is the ring of polynomials with coefficients in Z3. Consider the ideal (222 + z + 2).

Zs[z]

a) How many elements are in the quotient ring ——————"1
(2) Y d 22tz +2)

2



Zg [x]

(b) Reduce the following product in 2+t 2)

to the form (az +b) + (222 + x + 2):

Qe +14 (222 4+2+2) (x+1+ 222 +2+2)).

, 1y Zsla]
(c) Find [z + 2+ (222 + 2 + 2)] 71 1n<2362_i7x+2>.

Z
The ring (7] is analogous to Z, = —

(222 + x4 2) n)
n: To “simplify”, you divide the result of a computation by the modulus n and take the remainder. In
Zs|x] Zs|x]

(222 + 2 +2) (222 +z +2)’

you divide the result of a computation by 222 4+ = + 2 and take the remainder.

In the case of Z,, you do computations mod

, the polynomial 222 + = + 2 acts like the “modulus”. To do computations in

(a) By the Division Algorithm, any f(z) € Zs[x] can be written as
f(x) = 22* + . +2)q(z) +r(z), where degr(z) < deg(2z*+ z + 2).
This means that r(z) = ax + b, where a,b € Zs. Then
flx) +(22% + o +2) = [(22% + 2 + 2)q(x) + 7(z)] + (222 + 2+ 2) = (ax +b) + (22 + x + 2).
Since there are 3 choices for a and 3 choices for b, there are 9 cosets. 0O

(b) First, multiply the coset representatives:
(2 + 1)(z + 1) = 227 + 1.
Dividing 222 + 1 by 222 + 2 + 2, I get
202 + 1= (222 + 2+ 2)(1) + (22 + 2).
Then
20 + 1+ (20 +24+2) =[(22° + 2 +2) () + 2z +2)]+ 222 +x +2) =20+ 2+ 222+ +2). O

(c) To find multiplicative inverses in Z,, you use the Extended Euclidean Algorithm. The same idea works
in quotient rings of polynomial rings.

2+ x+2 - 2z
T+ 2 2z 1
2 2+ 1 0

(1)(2z% + x4+ 2) — (22)(z +2) =
(1)(22* + 24+ 2) + (z)(z +2) =
(2)(22% + x4 2) + (22)(z + 2) =
(2)(22% + x +2) + (22)(z + 2) + (227 +x+2>—1+<2z +z+2)
(2z)(x +2) + 222 + 2 +2) =1+ (222 + . +2)

Thus,
[t+2+ 222+ +2)] ' =20+ (22" +2+2). O




Example. (a) List the elements of the cosets of ((2,2)) in the ring Z4 X Zg.

Zy X
(b) Is the quotient ring an integral domain?

4
((2,2))
(a) If z is an element of a ring R, the ideal (z) consists of all multiples of by elements of R. It is not
necessarily the same as the additive subgroup generated by x, which is

{...,—3z,—2x,—2,0,2,2x,3x,...}.
In this example, the additive subgroup generated by (2,2) is

{(0,0),(2,2),(0,4),(2,0),(0,2),(2,4)}-

As usual, T get it by starting with the zero element (0,0) and the generator (2,2), then adding (2,2)
until T get back to (0,0).
This set is contained in the ideal ((2,2)); I need to check whether it is the same as the ideal.
If (a,b) € Zy X Zg, then
(a,b) - (2,2) = (2a,2b).

Thus, an element of the ideal ((2,2)) consists of a pair (2a,2b), where each component is even. There
are two even elements in Z, (namely 0 and 2) and 3 even elements in Zg (namely 0, 2, and 4), so there are
2 -3 = 6 such pairs. Thus, the ideal {(2,2)) has a maximum of 6 elements. Since the additive subgroup
above already has 6 elements, it must be the same as the ideal.

I can list the elements of the cosets of the ideal as I would for subgroups.

((2,2)) ={(0,0),(2,2),(0,4),(2,0),(0,2), (2,4)}
(0,1) +((2,2)) = {(0,1),(2,3),(0,5),(2,1),(0,3), (2,5)}
(170) + <(27 2)> = {(1’ 0)7 (37 2)7 (1’4)7 (370)7 (]‘72)7 (374)}
L1)+((2,2) = {(1,1),(3,3),(1,5),(3,1),(1,3),(3,5)}

Example. In the ring Zs X Z1g, consider the principal ideal {(1,5)).
(a) List the elements of ((1,5)).

(b) List the elements of the cosets of ((1,5)).

. . Lo x Lo
(c) Is the quotient ring ———— a field?
((1,5))
(a) Note that the additive subgroup generated by (1,5) has only two elements. It’s not the same as the
ideal generated by (1,5), so I can’t find the elements of the ideal by taking additive multiples of (1,5). I'll
find the elements of the ideal ((1,5)) by multiplying (1,5) by the elements of Zy x Zjq, then throwing out
duplicates. The computation is routine, if a bit tedious.

—
=
w
=
N

element (0,0)
-(1,5) (0,0) (0,5) (0,0) (0,5) (0,0)




element (0,5) (0,6) (0,7) (0,8) (0,9)
element (1,0) (1,1) (1,2) (1,3) (1,4)
element (1,5) (1,6) (1,7) (1,8) (1,9)

'(175) (175) (1’0) (1a5) (170) (175)

Removing duplicates, I have

((1,5)) ={(0,0),(0,5),(1,0), (1,5)}. O

(b) Since the ideal has 4 elements and the ring has 20, there must be 5 cosets.

((1,5)) ={(0,0),(0,5),(1,0),(1,5)}
(0,1) +((1,5)) = {(0,1),(0,6),(1,1),(1,6)}
(0’2)+ <(175)> = {(0’2)7(077>7(1’2)’(177)} o
(0,3) +((1,5)) = {(0,3),(0,8),(1,3), (1,8)}
(0,4) +((1,5)) = {(0,4),(0,9),(1,4),(1,9)}

(¢) Note that (0,1) + ((1,5)) is the identity.
[(0,2) + (1, 5))]1(0,3) + {(1,5))] = (0,1) + ((1,5))-

[(0,4) 4+ {(1,5)][(0,4) + ((1,5))] = (0,1) +((1,5)).

Since every nonzero coset has a multiplicative inverse, the quotient ring is a field. D
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