Quotient Rings

Let R be a ring, and let I be a (two-sided) ideal. Considering just the operation of addition, R is a group and I is a subgroup. In fact, since R is an abelian group under addition, I is a normal subgroup, and the quotient group $\frac{R}{I}$ is defined. Addition of cosets is defined by adding coset representatives:

$$
(a+I)+(b+I)=(a+b)+I
$$

The zero coset is $0+I=I$, and the additive inverse of a coset is given by $-(a+I)=(-a)+I$.
However, R also comes with a multiplication, and it's natural to ask whether you can turn $\frac{R}{I}$ into a ring by multiplying coset representatives:

$$
(a+I) \cdot(b+I)=a b+I
$$

I need to check that that this operation is well-defined, and that the ring axioms are satisfied. In fact, everything works, and you'll see in the proof that it depends on the fact that I is an ideal. Specifically, it depends on the fact that I is closed under multiplication by elements of R.

By the way, I'll sometimes write " $\frac{R}{I}$ " and sometimes " R / I "; they mean the same thing.
Theorem. If I is a two-sided ideal in a ring R, then R / I has the structure of a ring under coset addition and multiplication.

Proof. Suppose that I is a two-sided ideal in R. Let $r, s \in I$.
Coset addition is well-defined, because R is an abelian group and I a normal subgroup under addition. I proved that coset addition was well-defined when I constructed quotient groups.

I need to show that coset multiplication is well-defined:

$$
(r+I)(s+I)=r s+I
$$

As before, suppose that

$$
\begin{array}{lll}
r+I=r^{\prime}+I, & \text { so } \quad r=r^{\prime}+a, & a \in I \\
s+I=s^{\prime}+I, & \text { so } \quad s=s^{\prime}+b, & b \in I
\end{array}
$$

Then

$$
(r+I)(s+I)=r s+I=\left(r^{\prime}+a\right)\left(s^{\prime}+b\right)+I=r^{\prime} s^{\prime}+r^{\prime} b+a s^{\prime}+a b+I=r^{\prime} s^{\prime}+I=\left(r^{\prime}+I\right)\left(s^{\prime}+I\right)
$$

The next-to-last equality is derived as follows: $r^{\prime} b+a s^{\prime}+a b \in I$, because I is an ideal; hence $r^{\prime} b+$ $a s^{\prime}+a b+I=I$. Note that this uses the multiplication axiom for an ideal; in a sense, it explains why the multiplication axiom requires that an ideal be closed under multiplication by ring elements on the left and right.

Thus, coset multiplication is well-defined.
Verification of the ring axioms is easy but tedious: It reduces to the axioms for R.
For instance, suppose I want to verify associativity of multiplication. Take $r, s, t \in R$. Then
$((r+I)(s+I))(t+I)=(r s+I)(t+I)=(r s) t+I=r(s t)+I=(r+I)(s t+I)=(r+I)((s+I)(t+I))$.
(Notice how I used associativity of multiplication in R in the middle of the proof.) The proofs of the other axioms are similar.

Definition. If R is a ring and I is a two-sided ideal, the quotient ring of $R \bmod I$ is the group of cosets $\frac{R}{I}$ with the operations of coset addition and coset multiplication.

Proposition. Let R be a ring, and let I be an ideal
(a) If R is a commutative ring, so is R / I.
(b) If R has a multiplicative identity 1 , then $1+I$ is a multiplicative identity for R / I. In this case, if $r \in R$ is a unit, then so is $r+I$, and $(r+I)^{-1}=r^{-1}+I$.

Proof. (a) Let $r+I, s+I \in R / I$. Since R is commutative,

$$
(r+I)(s+I)=r s+I=s r+I=(s+I)(r+I)
$$

Therefore, R / I is commutative.
(b) Suppose R has a multiplicative identity 1 . Let $r \in R$. Then

$$
(r+I)(1+I)=r \cdot 1+I=r+I \quad \text { and } \quad(1+I)(r+I)=1 \cdot r+I=r+I
$$

Therefore, $1+I$ is the identity of R / I.
If $r \in R$ is a unit, then

$$
\left(r^{-1}+I\right)(r+I)=r^{-1} r+I=1+I \quad \text { and } \quad(r+I)\left(r^{-1}+I\right)=r r^{-1}+I=1+I
$$

Therefore, $(r+I)^{-1}=r^{-1}+I$.

Example. (A quotient ring of the integers) The set of even integers $\langle 2\rangle=2 \mathbb{Z}$ is an ideal in \mathbb{Z}. Form the quotient ring $\frac{\mathbb{Z}}{2 \mathbb{Z}}$.

Construct the addition and multiplication tables for the quotient ring.
Here are some cosets:

$$
2+2 \mathbb{Z}, \quad-15+2 \mathbb{Z}, \quad 841+2 \mathbb{Z}
$$

But two cosets $a+2 \mathbb{Z}$ and $b+2 \mathbb{Z}$ are the same exactly when a and b differ by an even integer. Every even integer differs from 0 by an even integer. Every odd integer differs from 1 by an even integer. So there are really only two cosets (up to renaming): $0+2 \mathbb{Z}=2 \mathbb{Z}$ and $1+2 \mathbb{Z}$.

Here are the addition and multiplication tables:

+	$0+2 \mathbb{Z}$	$1+2 \mathbb{Z}$
$0+2 \mathbb{Z}$	$0+2 \mathbb{Z}$	$1+2 \mathbb{Z}$
$1+2 \mathbb{Z}$	$1+2 \mathbb{Z}$	$0+2 \mathbb{Z}$

\times	$0+2 \mathbb{Z}$	$1+2 \mathbb{Z}$
$0+2 \mathbb{Z}$	$0+2 \mathbb{Z}$	$0+2 \mathbb{Z}$
$1+2 \mathbb{Z}$	$0+2 \mathbb{Z}$	$1+2 \mathbb{Z}$

You can see that $\frac{\mathbb{Z}}{2 \mathbb{Z}}$ is isomorphic to \mathbb{Z}_{2}.
In general, $\frac{\mathbb{Z}}{n \mathbb{Z}}$ is isomorphic to \mathbb{Z}_{n}. I've been using " \mathbb{Z}_{n} " informally to mean the set $\{0,1, \ldots, n-1\}$ with addition and multiplication $\bmod n$, and taking for granted that the usual ring axioms hold. This example gives a formal contruction of \mathbb{Z}_{n} as the quotient ring $\frac{\mathbb{Z}}{n \mathbb{Z}}$.

Example. $\mathbb{Z}_{3}[x]$ is the ring of polynomials with coefficients in \mathbb{Z}_{3}. Consider the ideal $\left\langle 2 x^{2}+x+2\right\rangle$.
(a) How many elements are in the quotient ring $\frac{\mathbb{Z}_{3}[x]}{\left\langle 2 x^{2}+x+2\right\rangle}$?
(b) Reduce the following product in $\frac{\mathbb{Z}_{3}[x]}{\left\langle 2 x^{2}+x+2\right\rangle}$ to the form $(a x+b)+\left\langle 2 x^{2}+x+2\right\rangle$:

$$
\left(2 x+1+\left\langle 2 x^{2}+x+2\right\rangle\right) \cdot\left(x+1+\left\langle 2 x^{2}+x+2\right\rangle\right) .
$$

(c) Find $\left[x+2+\left\langle 2 x^{2}+x+2\right\rangle\right]^{-1}$ in $\frac{\mathbb{Z}_{3}[x]}{\left\langle 2 x^{2}+x+2\right\rangle}$.

The ring $\frac{\mathbb{Z}_{3}[x]}{\left\langle 2 x^{2}+x+2\right\rangle}$ is analogous to $\mathbb{Z}_{n}=\frac{\mathbb{Z}}{\langle n\rangle}$. In the case of \mathbb{Z}_{n}, you do computations mod n : To "simplify", you divide the result of a computation by the modulus n and take the remainder. In $\frac{\mathbb{Z}_{3}[x]}{\left\langle 2 x^{2}+x+2\right\rangle}$, the polynomial $2 x^{2}+x+2$ acts like the "modulus". To do computations in $\frac{\mathbb{Z}_{3}[x]}{\left\langle 2 x^{2}+x+2\right\rangle}$, you divide the result of a computation by $2 x^{2}+x+2$ and take the remainder.
(a) By the Division Algorithm, any $f(x) \in \mathbb{Z}_{3}[x]$ can be written as

$$
f(x)=\left(2 x^{2}+x+2\right) q(x)+r(x), \quad \text { where } \quad \operatorname{deg} r(x)<\operatorname{deg}\left(2 x^{2}+x+2\right) .
$$

This means that $r(x)=a x+b$, where $a, b \in \mathbb{Z}_{3}$. Then

$$
f(x)+\left\langle 2 x^{2}+x+2\right\rangle=\left[\left(2 x^{2}+x+2\right) q(x)+r(x)\right]+\left\langle 2 x^{2}+x+2\right\rangle=(a x+b)+\left\langle 2 x^{2}+x+2\right\rangle .
$$

Since there are 3 choices for a and 3 choices for b, there are 9 cosets.
(b) First, multiply the coset representatives:

$$
(2 x+1)(x+1)=2 x^{2}+1 .
$$

Dividing $2 x^{2}+1$ by $2 x^{2}+x+2$, I get

$$
2 x^{2}+1=\left(2 x^{2}+x+2\right)(1)+(2 x+2) .
$$

Then

$$
2 x^{2}+1+\left\langle 2 x^{2}+x+2\right\rangle=\left[\left(2 x^{2}+x+2\right)(1)+(2 x+2)\right]+\left\langle 2 x^{2}+x+2\right\rangle=2 x+2+\left\langle 2 x^{2}+x+2\right\rangle .
$$

(c) To find multiplicative inverses in \mathbb{Z}_{n}, you use the Extended Euclidean Algorithm. The same idea works in quotient rings of polynomial rings.

$$
\begin{aligned}
\begin{array}{|c|c|c|}
\hline 2 x^{2}+x+2 & - & 2 x \\
\hline x+2 & 2 x & 1 \\
\hline 2 & 2 x+1 & 0 \\
\hline
\end{array} \\
\begin{aligned}
(1)\left(2 x^{2}+x+2\right)-(2 x)(x+2) & =2 \\
(1)\left(2 x^{2}+x+2\right)+(x)(x+2) & =2 \\
(2)\left(2 x^{2}+x+2\right)+(2 x)(x+2) & =1 \\
(2 x)\left(2 x^{2}+x+2\right)+(2 x)(x+2)+\left\langle 2 x^{2}+x+2\right\rangle & =1+\left\langle 2 x^{2}+x+2\right\rangle \\
(2 x)(x+2)+\left\langle 2 x^{2}+x+2\right\rangle & =1+\left\langle 2 x^{2}+x+2\right\rangle
\end{aligned} \\
\begin{aligned}
\\
(2)
\end{aligned} \\
\hline
\end{aligned}
$$

Thus,

$$
\left[x+2+\left\langle 2 x^{2}+x+2\right\rangle\right]^{-1}=2 x+\left\langle 2 x^{2}+x+2\right\rangle
$$

Example. (a) List the elements of the cosets of $\langle(2,2)\rangle$ in the ring $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$.
(b) Is the quotient ring $\frac{\mathbb{Z}_{4} \times \mathbb{Z}_{6}}{\langle(2,2)\rangle}$ an integral domain?
(a) If x is an element of a ring R, the ideal $\langle x\rangle$ consists of all multiples of x by elements of R. It is not necessarily the same as the additive subgroup generated by x, which is

$$
\{\ldots,-3 x,-2 x,-x, 0, x, 2 x, 3 x, \ldots\} .
$$

In this example, the additive subgroup generated by $(2,2)$ is

$$
\{(0,0),(2,2),(0,4),(2,0),(0,2),(2,4)\}
$$

As usual, I get it by starting with the zero element $(0,0)$ and the generator $(2,2)$, then adding $(2,2)$ until I get back to $(0,0)$.

This set is contained in the ideal $\langle(2,2)\rangle$; I need to check whether it is the same as the ideal.
If $(a, b) \in \mathbb{Z}_{4} \times \mathbb{Z}_{6}$, then

$$
(a, b) \cdot(2,2)=(2 a, 2 b)
$$

Thus, an element of the ideal $\langle(2,2)\rangle$ consists of a pair $(2 a, 2 b)$, where each component is even. There are two even elements in \mathbb{Z}_{4} (namely 0 and 2) and 3 even elements in \mathbb{Z}_{6} (namely 0,2 , and 4), so there are $2 \cdot 3=6$ such pairs. Thus, the ideal $\langle(2,2)\rangle$ has a maximum of 6 elements. Since the additive subgroup above already has 6 elements, it must be the same as the ideal.

I can list the elements of the cosets of the ideal as I would for subgroups.

$$
\begin{aligned}
\langle(2,2)\rangle & =\{(0,0),(2,2),(0,4),(2,0),(0,2),(2,4)\} \\
(0,1)+\langle(2,2)\rangle & =\{(0,1),(2,3),(0,5),(2,1),(0,3),(2,5)\} \\
(1,0)+\langle(2,2)\rangle & =\{(1,0),(3,2),(1,4),(3,0),(1,2),(3,4)\} \\
(1,1)+\langle(2,2)\rangle & =\{(1,1),(3,3),(1,5),(3,1),(1,3),(3,5)\}
\end{aligned}
$$

(b) Note that

$$
[(0,1)+\langle(2,2)\rangle][(1,0)+\langle(2,2)\rangle]=\langle(2,2)\rangle
$$

Hence, $\frac{\mathbb{Z}_{4} \times \mathbb{Z}_{6}}{\langle(2,2)\rangle}$ is not an integral domain.

Example. In the ring $\mathbb{Z}_{2} \times \mathbb{Z}_{10}$, consider the principal ideal $\langle(1,5)\rangle$.
(a) List the elements of $\langle(1,5)\rangle$.
(b) List the elements of the cosets of $\langle(1,5)\rangle$.
(c) Is the quotient ring $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{10}}{\langle(1,5)\rangle}$ a field?
(a) Note that the additive subgroup generated by $(1,5)$ has only two elements. It's not the same as the ideal generated by $(1,5)$, so I can't find the elements of the ideal by taking additive multiples of $(1,5)$. I'll find the elements of the ideal $\langle(1,5)\rangle$ by multiplying $(1,5)$ by the elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{10}$, then throwing out duplicates. The computation is routine, if a bit tedious.

element	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
$\cdot(1,5)$	$(0,0)$	$(0,5)$	$(0,0)$	$(0,5)$	$(0,0)$

element	$(0,5)$	$(0,6)$	$(0,7)$	$(0,8)$	$(0,9)$
$\cdot(1,5)$	$(0,5)$	$(0,0)$	$(0,5)$	$(0,0)$	$(0,5)$

element	$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$\cdot(1,5)$	$(1,0)$	$(1,5)$	$(1,0)$	$(1,5)$	$(1,0)$

element	$(1,5)$	$(1,6)$	$(1,7)$	$(1,8)$	$(1,9)$
$\cdot(1,5)$	$(1,5)$	$(1,0)$	$(1,5)$	$(1,0)$	$(1,5)$

Removing duplicates, I have

$$
\langle(1,5)\rangle=\{(0,0),(0,5),(1,0),(1,5)\} . \quad \square
$$

(b) Since the ideal has 4 elements and the ring has 20 , there must be 5 cosets.

$$
\begin{aligned}
\langle(1,5)\rangle & =\{(0,0),(0,5),(1,0),(1,5)\} \\
(0,1)+\langle(1,5)\rangle & =\{(0,1),(0,6),(1,1),(1,6)\} \\
(0,2)+\langle(1,5)\rangle & =\{(0,2),(0,7),(1,2),(1,7)\} \quad \square \\
(0,3)+\langle(1,5)\rangle & =\{(0,3),(0,8),(1,3),(1,8)\} \\
(0,4)+\langle(1,5)\rangle & =\{(0,4),(0,9),(1,4),(1,9)\}
\end{aligned}
$$

(c) Note that $(0,1)+\langle(1,5)\rangle$ is the identity.

$$
\begin{aligned}
& {[(0,2)+\langle(1,5)\rangle][(0,3)+\langle(1,5)\rangle]=(0,1)+\langle(1,5)\rangle .} \\
& {[(0,4)+\langle(1,5)\rangle][(0,4)+\langle(1,5)\rangle]=(0,1)+\langle(1,5)\rangle .}
\end{aligned}
$$

Since every nonzero coset has a multiplicative inverse, the quotient ring is a field. $\quad \square$

