Ring Homomorphisms

Definition. Let R and S be rings. A ring homomorphism (or a ring map for short) is a function $f: R \rightarrow S$ such that:
(a) For all $x, y \in R, f(x+y)=f(x)+f(y)$.
(b) For all $x, y \in R, f(x y)=f(x) f(y)$.

Usually, we require that if R and S are rings with 1 , then
(c) $f\left(1_{R}\right)=1_{S}$.

This is automatic in some cases; if there is any question, you should read carefully to find out what convention is being used.

The first two properties stipulate that f should "preserve" the ring structure - addition and multiplication.

Example. (A ring map on the integers mod 2) Show that the following function $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is a ring map:

$$
f(x)=x^{2} .
$$

First,

$$
f(x+y)=(x+y)^{2}=x^{2}+2 x y+y^{2}=x^{2}+y^{2}=f(x)+f(y) .
$$

$2 x y=0$ because 2 times anything is 0 in \mathbb{Z}_{2}.
Next,

$$
f(x y)=(x y)^{2}=x^{2} y^{2}=f(x) f(y) .
$$

The second equality follows from the fact that \mathbb{Z}_{2} is commutative.
Note also that $f(1)=1^{2}=1$.
Thus, f is a ring homomorphism.

Example. (An additive function which is not a ring map) Show that the following function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ is not a ring map:

$$
g(x)=2 x .
$$

Note that

$$
g(x+y)=2(x+y)=2 x+2 y=g(x)+g(y) .
$$

Therefore, g is additive - that is, g is a homomorphism of abelian groups.
But

$$
g(1 \cdot 3)=g(3)=2 \cdot 3=6, \quad \text { while } \quad g(1) g(3)=(2 \cdot 1)(2 \cdot 3)=12 .
$$

Thus, $g(1 \cdot 3) \neq g(1) g(3)$, so g is not a ring map.

Lemma. Let R and S be rings and let $f: R \rightarrow S$ be a ring map.
(a) $f(0)=0$.
(b) $f(-r)=-f(r)$ for all $r \in R$.

Proof. (a)

$$
f(0)=f(0+0)=f(0)+f(0), \quad \text { so } \quad f(0)=0
$$

(b) By (a),

$$
0=f(0)=f(r+(-r))=f(r)+f(-r)
$$

But this says that $f(-r)$ is the additive inverse of $f(r)$, i.e. $f(-r)=-f(r)$.
These properties are useful, and they also lend support to the idea that ring maps "preserve" the ring structure. Now I know that a ring map not only preserves addition and multiplication, but 0 and additive inverses as well.

Warning! A ring map f must satisfy $f(0)=0$ and $f(-r)=-f(r)$, but these are not part of the definition of a ring map. To check that something is a ring map, you check that it preserves sums and products.

On the other hand, if a function does not satisfy $f(0)=0$ and $f(-r)=-f(r)$, then it isn't a ring map.

Example. (Showing that a function is not a ring map) (a) Show that the following function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is not a ring map:

$$
f(x)=2 x+5 .
$$

(b) Show that the following $g: \mathbb{Z} \rightarrow \mathbb{Z}$ is not a ring map:

$$
g(x)=3 x
$$

(a) $f(0)=5 \neq 0$.
(b) $g(0)=0$ and $g(-n)=-g(n)$ for all $n \in \mathbb{Z}$. Nevertheless, g is not a ring map:

$$
g(3 \cdot 2)=g(6)=3 \cdot 6=18, \quad \text { but } \quad g(3) \cdot g(2)=(3 \cdot 3) \cdot(3 \cdot 2)=54
$$

Thus, $g(3 \cdot 2) \neq g(3) \cdot g(2)$, so g does not preserve products.

Lemma. Let R, S, and T be rings, and let $f: R \rightarrow S$ and $g: S \rightarrow T$ be ring maps. Then the composite $g \cdot f: R \rightarrow T$ is a ring map.

Proof. Let $x, y \in R$. Then

$$
\begin{gathered}
(g \cdot f)(x+y)=g(f(x+y))=g(f(x)+f(y))=g(f(x))+g(f(y))=(g \cdot f)(x)+(g \cdot f)(y) \\
(g \cdot f)(x \cdot y)=g(f(x \cdot y))=g(f(x) \cdot f(y))=g(f(x)) \cdot g(f(y))=(g \cdot f)(x) \cdot(g \cdot f)(y)
\end{gathered}
$$

If, in addition, R, S, and T are rings with identity, then

$$
(g \cdot f)(1)=g(f(1))=g(1)=1
$$

Therefore, $g \cdot f$ is a ring map. $\quad \square$
There is an important relationship between ring maps and ideals. I'll consider half of the relationship now.

Definition. The kernel of a ring map $\phi: R \rightarrow S$ is

$$
\operatorname{ker} \phi=\{r \in R \mid \phi(r)=0\}
$$

The image of a ring map $\phi: R \rightarrow S$ is

$$
\operatorname{im} \phi=\{\phi(r) \mid r \in R\}
$$

The kernel of a ring map is like the null space of a linear transformation of vector spaces. The image of a ring map is like the column space of a linear transformation.

Proposition. The kernel of a ring map is a two-sided ideal.
In fact, I'll show later that every two-sided ideal arises as the kernel of a ring map.
Proof. Let $\phi: R \rightarrow S$ be a ring map. Let $x, y \in \operatorname{ker} \phi$, so $\phi(x)=0$ and $\phi(y)=0$. Then

$$
\phi(x+y)=\phi(x)+\phi(y)=0+0=0
$$

Hence, $x+y \in \operatorname{ker} \phi$.
Since $\phi(0)=0,0 \in \operatorname{ker} \phi$.
Next, if $x \in \operatorname{ker} \phi$, then $\phi(x)=0$. Hence, $-\phi(x)=0$, so $\phi(-x)=0$ (why?), so $-x \in \operatorname{ker} \phi$.
Finally, let $x \in \operatorname{ker} \phi$ and let $r \in R$.

$$
\begin{aligned}
& \phi(r x)=\phi(r) \phi(x)=\phi(r) \cdot 0=0 \\
& \phi(x r)=\phi(x) \phi(r)=0 \cdot \phi(r)=0
\end{aligned}
$$

It follows that $r x, x r \in \operatorname{ker} \phi$. Hence, $\operatorname{ker} \phi$ is a two-sided ideal.
I'll omit the proof of the following result. Note that it says the image of a ring map is a subring, not an ideal.

Proposition. Let $\phi: R \rightarrow S$ be a ring map. Then $\operatorname{im} \phi$ is a subring of S.
Definition. Let R and S be rings. A ring isomorphism from R to S is a bijective ring homomorphism $f: R \rightarrow S$.

If there is a ring isomorphism $f: R \rightarrow S, R$ and S are isomorphic. In this case, we write $R \approx S$.
Heuristically, two rings are isomorphic if they are "the same" as rings.
An obvious example: If R is a ring, the identity map id : $R \rightarrow R$ is an isomorphism of R with itself.
Since a ring isomorphism is a bijection, isomorphic rings must have the same cardinality. So, for example, $\mathbb{Z}_{6} \not \approx \mathbb{Z}_{42}$, because the two rings have different numbers of elements.

However, \mathbb{Z} and \mathbb{Q} have the "same number" of elements - the same cardinality - but they are not isomorphic as rings. (Quick reason: \mathbb{Q} is a field, while \mathbb{Z} is only an integral domain.)

I've been using this construction informally in some examples. Here's the precise definition.
Definition. Let R and S be rings. The product ring $R \times S$ of R and S is the set consisting of all ordered pairs (r, s), where $r \in R$ and $s \in S$. Addition and multiplication are defined component-wise: For $a, b \in R$ and $x, y \in S$,

$$
\begin{gathered}
(a, x)+(b, y)=(a+b, x+y) \\
(a, x) \cdot(b, y)=(a \cdot b, x \cdot y)
\end{gathered}
$$

I won't go through the verification of all the axioms; basically, everything works because everything works in each component separately. For example, here's the verification of the associative law for addition. Let $a, b, c \in R, x, y, z \in S$. Then

$$
[(a, x)+(b, y)]+(c, z)=(a+b, x+y)+(c, z)=((a+b)+c,(x+y)+z)=(a+(b+c), x+(y+z))=
$$

$$
(a, x)+(b+c, y+z)=(a, x)+[(b, y)+(c, z)] .
$$

The third equality used associativity of addition in R and in S.
The additive identity is $(0,0)$; the additive inverse $-(r, s)$ of (r, s) is $(-r,-s)$. And so on. Try out one or two of the other axioms for yourself just to get a feel for how things work.

Example. (A ring isomorphic to a product of rings) Show that $\mathbb{Z}_{6} \approx \mathbb{Z}_{2} \times \mathbb{Z}_{3}$.
$\mathbb{Z}_{6} \approx\{0,1,2,3,4,5\}$ with addition and multiplication $\bmod 6$. On the other hand,

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{3}=\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\}
$$

One ring consists of single elements, while the other consists of pairs. Nevertheless, these rings are isomorphic - they are the same as rings.

Here are the addition and multiplication tables for \mathbb{Z}_{6} :

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Here are the addition and multiplication tables for $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.

+	$(0,0)$	$(0,1)$	$(0,2)$	$(1,0)$	$(1,1)$	$(1,2)$
$(0,0)$	$(0,0)$	$(0,1)$	$(0,2)$	$(1,0)$	$(1,1)$	$(1,2)$
$(0,1)$	$(0,1)$	$(0,2)$	$(0,0)$	$(1,1)$	$(1,2)$	$(1,0)$
$(0,2)$	$(0,2)$	$(0,0)$	$(0,1)$	$(1,2)$	$(1,0)$	$(1,1)$
$(1,0)$	$(1,0)$	$(1,1)$	$(1,2)$	$(0,0)$	$(0,1)$	$(0,2)$
$(1,1)$	$(1,1)$	$(1,2)$	$(1,0)$	$(0,1)$	$(0,2)$	$(0,0)$
$(1,2)$	$(1,2)$	$(1,0)$	$(1,1)$	$(0,2)$	$(0,0)$	$(0,1)$

\cdot	$(0,0)$	$(0,1)$	$(0,2)$	$(1,0)$	$(1,1)$	$(1,2)$
$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$
$(0,1)$	$(0,0)$	$(0,1)$	$(0,2)$	$(0,0)$	$(0,1)$	$(0,2)$
$(0,2)$	$(0,0)$	$(0,2)$	$(0,1)$	$(0,0)$	$(0,2)$	$(0,1)$
$(1,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$	$(1,0)$	$(1,0)$
$(1,1)$	$(0,0)$	$(0,1)$	$(0,2)$	$(1,0)$	$(1,1)$	$(1,2)$
$(1,2)$	$(0,0)$	$(0,2)$	$(0,1)$	$(1,0)$	$(1,2)$	$(1,1)$

The two rings each have 6 elements, so it's easy to define a bijection from one to the other - for example,

$$
f(0)=(0,0), f(1)=(0,1), f(2)=(0,2), f(3)=(1,0), f(4)=(1,1), f(5)=(1,2) .
$$

However, this is not a ring isomorphism:

$$
f(1+2)=f(3)=(1,0), \quad \text { while } \quad f(1)+f(2)=(0,1)+(0,2)=(0,0) .
$$

Thus, $f(1+2) \neq f(1)+f(2)$.
It turns out, however, that the following map gives a ring isomorphism $\mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{3}$:

$$
f(0)=(0,0), f(1)=(1,1), f(2)=(0,2), f(3)=(1,0), f(4)=(0,1), f(5)=(1,2) .
$$

It's obvious that the map is a bijection. To prove that this is a ring isomorphism, you'd have to check 36 cases for $f(r+s)=f(r)+f(s)$ and another 36 cases for $f(r \cdot s)=f(r) \cdot f(s)$.

Example. (Showing that a product of rings which is not isomorphic to another ring) Show that the rings \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are not isomorphic.
\mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ aren't isomorphic as groups under addition. Since a ring isomorphism must give an isomorphism of the two rings considered as groups under addition, \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ can't be isomorphic as rings.

To see this directly, suppose $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is an isomorphism. Then $f(1)+f(1)=(0,0)$, because everything in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ gives 0 when added to itself. But since f is a ring map,

$$
f(1)+f(1)=f(1+1)=f(2) .
$$

Therefore, $f(2)=(0,0)$.
But I know that $f(0)=(0,0)$, because any ring map takes the additive identity to the additive identity. Now I have two elements 2 and 0 which both map to $(0,0)$, and this contradicts the fact that f is injective.

Therefore, there is no such f, and the rings aren't isomorphic.

