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Ring Homomorphisms

Definition. Let R and S be rings. A ring homomorphism (or a ring map for short) is a function
f : R → S such that:

(a) For all x, y ∈ R, f(x+ y) = f(x) + f(y).

(b) For all x, y ∈ R, f(xy) = f(x)f(y).

Usually, we require that if R and S are rings with 1, then

(c) f(1R) = 1S .

This is automatic in some cases; if there is any question, you should read carefully to find out what
convention is being used.

The first two properties stipulate that f should “preserve” the ring structure — addition and multipli-
cation.

Example. (A ring map on the integers mod 2) Show that the following function f : Z2 → Z2 is a ring
map:

f(x) = x2.

First,
f(x+ y) = (x+ y)2 = x2 + 2xy + y2 = x2 + y2 = f(x) + f(y).

2xy = 0 because 2 times anything is 0 in Z2.
Next,

f(xy) = (xy)2 = x2y2 = f(x)f(y).

The second equality follows from the fact that Z2 is commutative.
Note also that f(1) = 12 = 1.
Thus, f is a ring homomorphism.

Example. (An additive function which is not a ring map) Show that the following function g : Z → Z

is not a ring map:
g(x) = 2x.

Note that
g(x+ y) = 2(x+ y) = 2x+ 2y = g(x) + g(y).

Therefore, g is additive — that is, g is a homomorphism of abelian groups.
But

g(1 · 3) = g(3) = 2 · 3 = 6, while g(1)g(3) = (2 · 1)(2 · 3) = 12.

Thus, g(1 · 3) 6= g(1)g(3), so g is not a ring map.

Lemma. Let R and S be rings and let f : R → S be a ring map.

(a) f(0) = 0.

(b) f(−r) = −f(r) for all r ∈ R.
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Proof. (a)
f(0) = f(0 + 0) = f(0) + f(0), so f(0) = 0.

(b) By (a),
0 = f(0) = f(r + (−r)) = f(r) + f(−r).

But this says that f(−r) is the additive inverse of f(r), i.e. f(−r) = −f(r).

These properties are useful, and they also lend support to the idea that ring maps “preserve” the ring
structure. Now I know that a ring map not only preserves addition and multiplication, but 0 and additive
inverses as well.

Warning! A ring map f must satisfy f(0) = 0 and f(−r) = −f(r), but these are not part of the
definition of a ring map. To check that something is a ring map, you check that it preserves sums and
products.

On the other hand, if a function does not satisfy f(0) = 0 and f(−r) = −f(r), then it isn’t a ring map.

Example. (Showing that a function is not a ring map) (a) Show that the following function f : Z → Z

is not a ring map:
f(x) = 2x+ 5.

(b) Show that the following g : Z → Z is not a ring map:

g(x) = 3x.

(a) f(0) = 5 6= 0.

(b) g(0) = 0 and g(−n) = −g(n) for all n ∈ Z. Nevertheless, g is not a ring map:

g(3 · 2) = g(6) = 3 · 6 = 18, but g(3) · g(2) = (3 · 3) · (3 · 2) = 54.

Thus, g(3 · 2) 6= g(3) · g(2), so g does not preserve products.

Lemma. Let R, S, and T be rings, and let f : R → S and g : S → T be ring maps. Then the composite
g · f : R → T is a ring map.

Proof. Let x, y ∈ R. Then

(g · f)(x+ y) = g(f(x+ y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = (g · f)(x) + (g · f)(y).

(g · f)(x · y) = g(f(x · y)) = g(f(x) · f(y)) = g(f(x)) · g(f(y)) = (g · f)(x) · (g · f)(y).

If, in addition, R, S, and T are rings with identity, then

(g · f)(1) = g(f(1)) = g(1) = 1.

Therefore, g · f is a ring map.

There is an important relationship between ring maps and ideals. I’ll consider half of the relationship
now.

Definition. The kernel of a ring map φ : R → S is

kerφ = {r ∈ R | φ(r) = 0}.
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The image of a ring map φ : R → S is

imφ = {φ(r) | r ∈ R}.

The kernel of a ring map is like the null space of a linear transformation of vector spaces. The image of
a ring map is like the column space of a linear transformation.

Proposition. The kernel of a ring map is a two-sided ideal.

In fact, I’ll show later that every two-sided ideal arises as the kernel of a ring map.

Proof. Let φ : R → S be a ring map. Let x, y ∈ kerφ, so φ(x) = 0 and φ(y) = 0. Then

φ(x+ y) = φ(x) + φ(y) = 0 + 0 = 0.

Hence, x+ y ∈ kerφ.
Since φ(0) = 0, 0 ∈ kerφ.
Next, if x ∈ kerφ, then φ(x) = 0. Hence, −φ(x) = 0, so φ(−x) = 0 (why?), so −x ∈ kerφ.
Finally, let x ∈ kerφ and let r ∈ R.

φ(rx) = φ(r)φ(x) = φ(r) · 0 = 0,

φ(xr) = φ(x)φ(r) = 0 · φ(r) = 0.

It follows that rx, xr ∈ kerφ. Hence, kerφ is a two-sided ideal.

I’ll omit the proof of the following result. Note that it says the image of a ring map is a subring, not an
ideal.

Proposition. Let φ : R → S be a ring map. Then imφ is a subring of S.

Definition. Let R and S be rings. A ring isomorphism from R to S is a bijective ring homomorphism
f : R → S.

If there is a ring isomorphism f : R → S, R and S are isomorphic. In this case, we write R ≈ S.

Heuristically, two rings are isomorphic if they are “the same” as rings.
An obvious example: If R is a ring, the identity map id : R → R is an isomorphism of R with itself.

Since a ring isomorphism is a bijection, isomorphic rings must have the same cardinality. So, for example,
Z6 6≈ Z42, because the two rings have different numbers of elements.

However, Z and Q have the “same number” of elements — the same cardinality — but they are not
isomorphic as rings. (Quick reason: Q is a field, while Z is only an integral domain.)

I’ve been using this construction informally in some examples. Here’s the precise definition.

Definition. Let R and S be rings. The product ring R× S of R and S is the set consisting of all ordered
pairs (r, s), where r ∈ R and s ∈ S. Addition and multiplication are defined component-wise: For a, b ∈ R

and x, y ∈ S,
(a, x) + (b, y) = (a+ b, x+ y).

(a, x) · (b, y) = (a · b, x · y).

I won’t go through the verification of all the axioms; basically, everything works because everything
works in each component separately. For example, here’s the verification of the associative law for addition.
Let a, b, c ∈ R, x, y, z ∈ S. Then

[(a, x) + (b, y)] + (c, z) = (a+ b, x+ y) + (c, z) = ((a+ b) + c, (x+ y) + z) = (a+ (b+ c), x+ (y + z)) =

3



(a, x) + (b+ c, y + z) = (a, x) + [(b, y) + (c, z)].

The third equality used associativity of addition in R and in S.

The additive identity is (0, 0); the additive inverse −(r, s) of (r, s) is (−r,−s). And so on. Try out one
or two of the other axioms for yourself just to get a feel for how things work.

Example. (A ring isomorphic to a product of rings) Show that Z6 ≈ Z2 × Z3.

Z6 ≈ {0, 1, 2, 3, 4, 5} with addition and multiplication mod 6. On the other hand,

Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

One ring consists of single elements, while the other consists of pairs. Nevertheless, these rings are
isomorphic — they are the same as rings.

Here are the addition and multiplication tables for Z6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Here are the addition and multiplication tables for Z2 × Z3.

+ (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

(0, 0) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

(0, 1) (0, 1) (0, 2) (0, 0) (1, 1) (1, 2) (1, 0)

(0, 2) (0, 2) (0, 0) (0, 1) (1, 2) (1, 0) (1, 1)

(1, 0) (1, 0) (1, 1) (1, 2) (0, 0) (0, 1) (0, 2)

(1, 1) (1, 1) (1, 2) (1, 0) (0, 1) (0, 2) (0, 0)

(1, 2) (1, 2) (1, 0) (1, 1) (0, 2) (0, 0) (0, 1)
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· (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 1) (0, 0) (0, 1) (0, 2) (0, 0) (0, 1) (0, 2)

(0, 2) (0, 0) (0, 2) (0, 1) (0, 0) (0, 2) (0, 1)

(1, 0) (0, 0) (0, 0) (0, 0) (1, 0) (1, 0) (1, 0)

(1, 1) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

(1, 2) (0, 0) (0, 2) (0, 1) (1, 0) (1, 2) (1, 1)

The two rings each have 6 elements, so it’s easy to define a bijection from one to the other — for example,

f(0) = (0, 0), f(1) = (0, 1), f(2) = (0, 2), f(3) = (1, 0), f(4) = (1, 1), f(5) = (1, 2).

However, this is not a ring isomorphism:

f(1 + 2) = f(3) = (1, 0), while f(1) + f(2) = (0, 1) + (0, 2) = (0, 0).

Thus, f(1 + 2) 6= f(1) + f(2).
It turns out, however, that the following map gives a ring isomorphism Z6 → Z2 × Z3:

f(0) = (0, 0), f(1) = (1, 1), f(2) = (0, 2), f(3) = (1, 0), f(4) = (0, 1), f(5) = (1, 2).

It’s obvious that the map is a bijection. To prove that this is a ring isomorphism, you’d have to check
36 cases for f(r + s) = f(r) + f(s) and another 36 cases for f(r · s) = f(r) · f(s).

Example. (Showing that a product of rings which is not isomorphic to another ring) Show that
the rings Z4 and Z2 × Z2 are not isomorphic.

Z4 and Z2 × Z2 aren’t isomorphic as groups under addition. Since a ring isomorphism must give an
isomorphism of the two rings considered as groups under addition, Z4 and Z2 × Z2 can’t be isomorphic as
rings.

To see this directly, suppose f : Z4 → Z2 × Z2 is an isomorphism. Then f(1) + f(1) = (0, 0), because
everything in Z2 × Z2 gives 0 when added to itself. But since f is a ring map,

f(1) + f(1) = f(1 + 1) = f(2).

Therefore, f(2) = (0, 0).
But I know that f(0) = (0, 0), because any ring map takes the additive identity to the additive identity.

Now I have two elements 2 and 0 which both map to (0, 0), and this contradicts the fact that f is injective.
Therefore, there is no such f , and the rings aren’t isomorphic.
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