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The Group of Units in the Integers mod n

The group Zn consists of the elements {0, 1, 2, . . . , n−1} with addition mod n as the operation. You can
also multiply elements of Zn, but you do not obtain a group: The element 0 does not have a multiplicative
inverse, for instance.

However, if you confine your attention to the units in Zn — the elements which have multiplicative
inverses — you do get a group under multiplication mod n. It is denoted Un, and is called the group of

units in Zn.

Proposition. Let Un be the set of units in Zn, n ≥ 1. Then Un is a group under multiplication mod n.

Proof. To show that multiplication mod n is a binary operation on Un, I must show that the product of
units is a unit.

Suppose a, b ∈ Un. Then a has a multiplicative inverse a−1 and b has a multiplicative inverse b−1. Now

(b−1a−1)(ab) = b−1(a−1a)b = b−1(1)b = b−1b = 1,

(ab)(b−1a−1) = a(bb−1)a−1 = a(1)a−1 = aa−1 = 1.

Hence, b−1a−1 is the multiplicative inverse of ab, and ab is a unit. Therefore, multiplication mod n is a
binary operation on Un.

(By the way, you may have seen the result (ab)−1 = b−1a−1 when you studied linear algebra; it’s a
standard identity for invertible matrices.)

I’ll take it for granted that multiplication mod n is associative.
The identity element for multiplication mod n is 1, and 1 is a unit in Zn (with multiplicative inverrse

1).
Finally, every element of Un has a multiplicative inverse, by definition.
Therefore, Un is a group under multiplication mod n.

Before I give some examples, recall that m is a unit in Zn if and only if m is relatively prime to n.

Example. (The groups of units in Z14) Construct a multiplication table for U14.

U14 consists of the elements of Z14 which are relatively prime to 14. Thus,

U14 = {1, 3, 5, 9, 11, 13}.

You multiply elements of U14 by multiplying as if they were integers, then reducing mod 14. For example,

11 · 13 = 143 = 3 (mod 14) , so 11 · 13 = 3 in Z14.

Here’s the multiplication table for U14:

* 1 3 5 9 11 13

1 1 3 5 9 11 13

3 3 9 1 13 5 11

5 5 1 11 3 13 9

9 9 13 3 11 1 5

11 11 5 13 1 9 3

13 13 11 9 5 3 1
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Notice that the table is symmetric about the main diagonal. Multiplication mod 14 is commutative,
and U14 is an abelian group.

Be sure to keep the operations straight: The operation in Z14 is addition mod 14, while the operation
in U14 is multiplication mod 14.

Example. (The groups of units in Zp) What are the elements of Up if p is a prime number?
Construct a multiplication table for U11.

If p is prime, then all the positive integers smaller than p are relatively prime to p. Thus,

Up = {1, 2, 3, . . . , p− 1}.

For example, in Z11, the group of units is

U11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

The operation in U11 is multiplication mod 11. For example, 8 · 6 = 4 in U11. Here’s the multiplication
table for U11:

* 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 1 3 5 7 9

3 3 6 9 1 4 7 10 2 5 8

4 4 8 1 5 9 2 6 10 3 7

5 5 10 4 9 3 8 2 7 1 6

6 6 1 7 2 8 3 9 4 10 5

7 7 3 10 6 2 9 5 1 8 4

8 8 5 2 10 7 4 1 9 6 3

9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1

Example. (The subgroup generated by an element) List the elements of 〈7〉 in U18.

The elements in {0, 1, 2, . . . , 17} which are relatively prime to 18 are the elements of U18:

U18 = {1, 5, 7, 11, 13, 17}.

The operation is multiplication mod 18.
Since the operation is multiplication, the cyclic subgroup generated by 7 consists of all powers of 7:

70 = 1, 71 = 7, 72 = 13.

I can stop here, because 73 = 343 = 1 mod 18. So

〈7〉 = {1, 7, 13}.
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For the next result, I’ll need a special case of Lagrange’s theorem: The order of an element in a finite

group divides the order of the group. I’ll prove Lagrange’s theorem when I discuss cosets.
As an example, in a group of order 10, an element may have order 1, 2, 5, or 10, but it may not have

order 8.

Theorem. (Fermat’s Theorem) If a and p are integers, p is prime, and p 6 | a, then

ap−1 = 1 (mod p) .

Proof. If p is prime, then
Up = {1, 2, 3, . . . , p− 1}.

In particular, |Up| = p− 1.
Now if p 6 | a, then

a = b (mod p) , where b ∈ {1, 2, 3, . . . , p− 1}.

Lagrange’s theorem implies that the order of an element divides the order of the group. As a result,
bp−1 = 1 in Up. Hence,

ap−1 = bp−1 = 1 (mod p) .

Example. (Using Fermat’s Theorem to reduce a power) Compute 772401 (mod 97).

The idea is to use Fermat’s theorem to reduce the power to smaller numbers where you can do the
computations directly.

97 is prime, and 97 6 | 77. By Fermat’s theorem,

7796 = 1 (mod 97) .

So
772401 = 772400 · 77 = (7796)25 · 77 = 1 · 77 = 77 (mod 97) .

Example. 157 is prime. Reduce 138155 (mod 157) to a number in {0, 1, . . . 156}.

By Fermat’s Theorem, 138156 = 1 (mod 157). So

x = 138155 (mod 157)

138x = 138156 = 1 (mod 157)

Next,

157 - 33

138 1 29

19 7 4

5 3 1

4 1 1

1 4 0

(−29) · 157 + 33 · 138 = 1

33 · 138 = 1 (mod 157)
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Hence, 138−1 = 33 (mod 157).
So

33 · 138x = 33 · 1 (mod 157)

x = 33 (mod 157)

Here is a result which is related to Fermat’s Theorem.

Theorem. (Wilson’s Theorem) p is prime if and only if

(p− 1)! = −1 (mod p) .

Proof. If p is prime, consider the numbers in {1, 2, . . . p − 1}. Note that if x = x−1 (mod p), then
x · x = 1 (mod p), so

x2 − 1 = 0 (mod p)

(x− 1)(x+ 1) = 0 (mod p)

Hence, p | (x − 1)(x + 1), and by Euclid’s lemma either p | x − 1 and x = 1 (mod p) or p | x + 1 and
x = −1 = p− 1 (mod p).

In other words, the only two numbers in {1, 2, . . . p− 1} which are their own multiplicative inverses are
1 and p− 1. The other numbers in this set pair up as a and a−1 with a 6= a−1 (mod p). Hence, the product
simplifies to

1 · (pairs whose product is 1) · (−1) = −1 (mod p) .

On the other hand, if p is not prime, then p is composite. If p = ab where 1 < a < b < p, then

(p− 1)! = 1 · · · a · · · b · (p− 1) = 0 (mod p) .

Thus, (p− 1)! 6= −1 (mod p).
The only other possibility is that p = q2, where q is a prime.
If q > 2, then

p = q2 > 2q > q.

Then both 2q and q appear in the set {1, 2, . . . p − 1}, so the product 1 · 2 · · · (p − 1) contains a factor
of 2q · q = 2p = 0modp. Once again, (p− 1)! = 0 6= −1 (mod p).

The final case is q = 2 and p = q2 = 4. Then

(p− 1)! = 1 · 2 · 3 = 6 = 2 6= 0 (mod 4) .

Example. 131 is prime. Reduce
130!

33
(mod 131) to a number in {0, 1, . . . 130}.

By Wilson’s Theorem, 130! = −1 (mod 131). So

x =
130!

33
(mod 131)

33x = 130! = −1 (mod 131)

4 · 33x = 4 · (−1) (mod 131)

x = −4 = 127 (mod 131)
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