The Group of Units in the Integers mod n

The group \mathbb{Z}_n consists of the elements $\{0, 1, 2, ..., n-1\}$ with *addition* mod n as the operation. You can also *multiply* elements of \mathbb{Z}_n , but you do not obtain a group: The element 0 does not have a multiplicative inverse, for instance.

However, if you confine your attention to the **units** in \mathbb{Z}_n — the elements which have multiplicative inverses — you do get a group under multiplication mod n. It is denoted U_n , and is called the **group of units** in \mathbb{Z}_n .

Proposition. Let U_n be the set of units in \mathbb{Z}_n , $n \ge 1$. Then U_n is a group under multiplication mod n.

Proof. To show that multiplication mod n is a binary operation on U_n , I must show that the product of units is a unit.

Suppose $a, b \in U_n$. Then a has a multiplicative inverse a^{-1} and b has a multiplicative inverse b^{-1} . Now

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}(1)b = b^{-1}b = 1,$$

 $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a(1)a^{-1} = aa^{-1} = 1.$

Hence, $b^{-1}a^{-1}$ is the multiplicative inverse of ab, and ab is a unit. Therefore, multiplication mod n is a binary operation on U_n .

(By the way, you may have seen the result $(ab)^{-1} = b^{-1}a^{-1}$ when you studied linear algebra; it's a standard identity for invertible matrices.)

I'll take it for granted that multiplication mod n is associative.

The identity element for multiplication mod n is 1, and 1 is a unit in \mathbb{Z}_n (with multiplicative inverse 1).

Finally, every element of U_n has a multiplicative inverse, by definition.

Therefore, U_n is a group under multiplication mod n. \Box

Before I give some examples, recall that m is a unit in \mathbb{Z}_n if and only if m is relatively prime to n.

Example. (The groups of units in \mathbb{Z}_{14}) Construct a multiplication table for U_{14} .

 U_{14} consists of the elements of \mathbb{Z}_{14} which are relatively prime to 14. Thus,

$$U_{14} = \{1, 3, 5, 9, 11, 13\}.$$

You multiply elements of U_{14} by multiplying as if they were integers, then reducing mod 14. For example,

$$11 \cdot 13 = 143 = 3 \pmod{14}$$
, so $11 \cdot 13 = 3$ in \mathbb{Z}_{14} .

Here's the multiplication table for U_{14} :

*	1	3	5	9	11	13
1	1	3	5	9	11	13
3	3	9	1	13	5	11
5	5	1	11	3	13	9
9	9	13	3	11	1	5
11	11	5	13	1	9	3
13	13	11	9	5	3	1

Notice that the table is symmetric about the main diagonal. Multiplication mod 14 is commutative, and U_{14} is an **abelian group**.

Be sure to keep the operations straight: The operation in \mathbb{Z}_{14} is *addition* mod 14, while the operation in U_{14} is *multiplication* mod 14. \Box

Example. (The groups of units in \mathbb{Z}_p) What are the elements of U_p if p is a prime number? Construct a multiplication table for U_{11} .

If p is prime, then all the positive integers smaller than p are relatively prime to p. Thus,

$$U_p = \{1, 2, 3, \dots, p-1\}.$$

For example, in \mathbb{Z}_{11} , the group of units is

$$U_{11} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

The operation in U_{11} is multiplication mod 11. For example, $8 \cdot 6 = 4$ in U_{11} . Here's the multiplication table for U_{11} :

*	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

Example. (The subgroup generated by an element) List the elements of $\langle 7 \rangle$ in U_{18} .

The elements in $\{0, 1, 2, \ldots, 17\}$ which are relatively prime to 18 are the elements of U_{18} :

$$U_{18} = \{1, 5, 7, 11, 13, 17\}.$$

The operation is *multiplication* mod 18.

Since the operation is multiplication, the cyclic subgroup generated by 7 consists of all *powers* of 7:

$$7^0 = 1, \quad 7^1 = 7, \quad 7^2 = 13.$$

I can stop here, because $7^3 = 343 = 1 \mod 18$. So

 $\langle 7 \rangle = \{1, 7, 13\}. \quad \Box$

For the next result, I'll need a special case of **Lagrange's theorem**: *The order of an element in a finite group divides the order of the group.* I'll prove Lagrange's theorem when I discuss cosets.

As an example, in a group of order 10, an element may have order 1, 2, 5, or 10, but it may not have order 8.

Theorem. (Fermat's Theorem) If a and p are integers, p is prime, and $p \not| a$, then

$$a^{p-1} = 1 \pmod{p}$$

Proof. If p is prime, then

$$U_p = \{1, 2, 3, \dots, p-1\}.$$

In particular, $|U_p| = p - 1$. Now if $p \not\mid a$, then

 $a = b \pmod{p}$, where $b \in \{1, 2, 3, \dots, p-1\}$.

Lagrange's theorem implies that the order of an element divides the order of the group. As a result, $b^{p-1} = 1$ in U_p . Hence,

$$a^{p-1} = b^{p-1} = 1 \pmod{p}$$
. \Box

Example. (Using Fermat's Theorem to reduce a power) Compute 77²⁴⁰¹ (mod 97).

The idea is to use Fermat's theorem to reduce the power to smaller numbers where you can do the computations directly.

97 is prime, and 97 / 77. By Fermat's theorem,

$$77^{96} = 1 \pmod{97}$$
.

So

$$77^{2401} = 77^{2400} \cdot 77 = (77^{96})^{25} \cdot 77 = 1 \cdot 77 = 77 \pmod{97}$$
.

Example. 157 is prime. Reduce $138^{155} \pmod{157}$ to a number in $\{0, 1, \dots, 156\}$.

By Fermat's Theorem, $138^{156} = 1 \pmod{157}$. So

$$x = 138^{155} \pmod{157}$$

$$138x = 138^{156} = 1 \pmod{157}$$

Next,

157	-	33
138	1	29
19	7	4
5	3	1
4	1	1
1	4	0

 $(-29) \cdot 157 + 33 \cdot 138 = 1$ $33 \cdot 138 = 1 \pmod{157}$

Hence, $138^{-1} = 33 \pmod{157}$. \mathbf{So}

$$33 \cdot 138x = 33 \cdot 1 \pmod{157}$$

 $x = 33 \pmod{157}$

Here is a result which is related to Fermat's Theorem.

Theorem. (Wilson's Theorem) p is prime if and only if

$$(p-1)! = -1 \pmod{p}$$

Proof. If p is prime, consider the numbers in $\{1, 2, \dots, p-1\}$. Note that if $x = x^{-1} \pmod{p}$, then $x \cdot x = 1 \pmod{p}$, so

$$x^{2} - 1 = 0 \pmod{p}$$
$$(x - 1)(x + 1) = 0 \pmod{p}$$

Hence, $p \mid (x-1)(x+1)$, and by Euclid's lemma either $p \mid x-1$ and $x=1 \pmod{p}$ or $p \mid x+1$ and $x = -1 = p - 1 \pmod{p}$.

In other words, the only two numbers in $\{1, 2, \dots, p-1\}$ which are their own multiplicative inverses are 1 and p-1. The other numbers in this set pair up as a and a^{-1} with $a \neq a^{-1} \pmod{p}$. Hence, the product simplifies to

 $1 \cdot (\text{pairs whose product is } 1) \cdot (-1) = -1 \pmod{p}$.

On the other hand, if p is not prime, then p is composite. If p = ab where 1 < a < b < p, then

$$(p-1)! = 1 \cdots a \cdots b \cdot (p-1) = 0 \pmod{p}.$$

Thus, $(p-1)! \neq -1 \pmod{p}$.

The only other possibility is that $p = q^2$, where q is a prime. If q > 2, then

$$p = q^2 > 2q > q.$$

Then both 2q and q appear in the set $\{1, 2, \dots, p-1\}$, so the product $1 \cdot 2 \cdots (p-1)$ contains a factor of $2q \cdot q = 2p = 0 \mod p$. Once again, $(p-1)! = 0 \neq -1 \pmod{p}$. The final case is q = 2 and $p = q^2 = 4$. Then

$$(p-1)! = 1 \cdot 2 \cdot 3 = 6 = 2 \neq 0 \pmod{4}$$
.

Example. 131 is prime. Reduce $\frac{130!}{33} \pmod{131}$ to a number in $\{0, 1, \dots, 130\}$.

By Wilson's Theorem, $130! = -1 \pmod{131}$. So

$$x = \frac{130!}{33} \pmod{131}$$

$$33x = 130! = -1 \pmod{131}$$

$$4 \cdot 33x = 4 \cdot (-1) \pmod{131}$$

$$x = -4 = 127 \pmod{131}$$