The Group of Units in the Integers mod n

The group \mathbb{Z}_{n} consists of the elements $\{0,1,2, \ldots, n-1\}$ with addition $\bmod n$ as the operation. You can also multiply elements of \mathbb{Z}_{n}, but you do not obtain a group: The element 0 does not have a multiplicative inverse, for instance.

However, if you confine your attention to the units in \mathbb{Z}_{n} - the elements which have multiplicative inverses - you do get a group under multiplication $\bmod n$. It is denoted U_{n}, and is called the group of units in \mathbb{Z}_{n}.

Proposition. Let U_{n} be the set of units in $\mathbb{Z}_{n}, n \geq 1$. Then U_{n} is a group under multiplication $\bmod n$.
Proof. To show that multiplication $\bmod n$ is a binary operation on U_{n}, I must show that the product of units is a unit.

Suppose $a, b \in U_{n}$. Then a has a multiplicative inverse a^{-1} and b has a multiplicative inverse b^{-1}. Now

$$
\begin{aligned}
& \left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(a^{-1} a\right) b=b^{-1}(1) b=b^{-1} b=1, \\
& (a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a(1) a^{-1}=a a^{-1}=1 .
\end{aligned}
$$

Hence, $b^{-1} a^{-1}$ is the multiplicative inverse of $a b$, and $a b$ is a unit. Therefore, multiplication $\bmod n$ is a binary operation on U_{n}.
(By the way, you may have seen the result $(a b)^{-1}=b^{-1} a^{-1}$ when you studied linear algebra; it's a standard identity for invertible matrices.)

I'll take it for granted that multiplication $\bmod n$ is associative.
The identity element for multiplication $\bmod n$ is 1 , and 1 is a unit in \mathbb{Z}_{n} (with multiplicative inverrse 1).

Finally, every element of U_{n} has a multiplicative inverse, by definition.
Therefore, U_{n} is a group under multiplication $\bmod n . \quad \square$
Before I give some examples, recall that m is a unit in \mathbb{Z}_{n} if and only if m is relatively prime to n.

Example. (The groups of units in \mathbb{Z}_{14}) Construct a multiplication table for U_{14}.
U_{14} consists of the elements of \mathbb{Z}_{14} which are relatively prime to 14 . Thus,

$$
U_{14}=\{1,3,5,9,11,13\} .
$$

You multiply elements of U_{14} by multiplying as if they were integers, then reducing mod 14. For example,

$$
11 \cdot 13=143=3(\bmod 14), \quad \text { so } \quad 11 \cdot 13=3 \quad \text { in } \quad \mathbb{Z}_{14} .
$$

Here's the multiplication table for U_{14} :

$*$	1	3	5	9	11	13
1	1	3	5	9	11	13
3	3	9	1	13	5	11
5	5	1	11	3	13	9
9	9	13	3	11	1	5
11	11	5	13	1	9	3
13	13	11	9	5	3	1

Notice that the table is symmetric about the main diagonal. Multiplication mod 14 is commutative, and U_{14} is an abelian group.

Be sure to keep the operations straight: The operation in \mathbb{Z}_{14} is addition $\bmod 14$, while the operation in U_{14} is multiplication mod 14.

Example. (The groups of units in \mathbb{Z}_{p}) What are the elements of U_{p} if p is a prime number?
Construct a multiplication table for U_{11}.
If p is prime, then all the positive integers smaller than p are relatively prime to p. Thus,

$$
U_{p}=\{1,2,3, \ldots, p-1\}
$$

For example, in \mathbb{Z}_{11}, the group of units is

$$
U_{11}=\{1,2,3,4,5,6,7,8,9,10\} .
$$

The operation in U_{11} is multiplication mod 11. For example, $8 \cdot 6=4$ in U_{11}. Here's the multiplication table for U_{11} :

$*$	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

Example. (The subgroup generated by an element) List the elements of $\langle 7\rangle$ in U_{18}.
The elements in $\{0,1,2, \ldots, 17\}$ which are relatively prime to 18 are the elements of U_{18} :

$$
U_{18}=\{1,5,7,11,13,17\}
$$

The operation is multiplication mod 18.
Since the operation is multiplication, the cyclic subgroup generated by 7 consists of all powers of 7 :

$$
7^{0}=1, \quad 7^{1}=7, \quad 7^{2}=13
$$

I can stop here, because $7^{3}=343=1 \bmod 18$. So

$$
\langle 7\rangle=\{1,7,13\} .
$$

For the next result, I'll need a special case of Lagrange's theorem: The order of an element in a finite group divides the order of the group. I'll prove Lagrange's theorem when I discuss cosets.

As an example, in a group of order 10, an element may have order 1, 2, 5, or 10 , but it may not have order 8 .

Theorem. (Fermat's Theorem) If a and p are integers, p is prime, and $p \nmid a$, then

$$
a^{p-1}=1(\bmod p)
$$

Proof. If p is prime, then

$$
U_{p}=\{1,2,3, \ldots, p-1\}
$$

In particular, $\left|U_{p}\right|=p-1$.
Now if $p \nmid a$, then

$$
a=b(\bmod p), \quad \text { where } \quad b \in\{1,2,3, \ldots, p-1\} .
$$

Lagrange's theorem implies that the order of an element divides the order of the group. As a result, $b^{p-1}=1$ in U_{p}. Hence,

$$
a^{p-1}=b^{p-1}=1(\bmod p)
$$

Example. (Using Fermat's Theorem to reduce a power) Compute $77^{2401}(\bmod 97)$.
The idea is to use Fermat's theorem to reduce the power to smaller numbers where you can do the computations directly.

97 is prime, and $97 \not \subset 77$. By Fermat's theorem,

$$
77^{96}=1(\bmod 97)
$$

So

$$
77^{2401}=77^{2400} \cdot 77=\left(77^{96}\right)^{25} \cdot 77=1 \cdot 77=77(\bmod 97)
$$

Example. 157 is prime. Reduce $138^{155}(\bmod 157)$ to a number in $\{0,1, \ldots 156\}$.
By Fermat's Theorem, $138^{156}=1(\bmod 157)$. So

$$
\begin{aligned}
x & =138^{155}(\bmod 157) \\
138 x & =138^{156}=1(\bmod 157)
\end{aligned}
$$

Next,

157	-	33
138	1	29
19	7	4
5	3	1
4	1	1
1	4	0

$$
\begin{aligned}
(-29) \cdot 157+33 \cdot 138 & =1 \\
33 \cdot 138 & =1(\bmod 157)
\end{aligned}
$$

Hence, $138^{-1}=33(\bmod 157)$.
So

$$
\begin{aligned}
33 \cdot 138 x & =33 \cdot 1(\bmod 157) \\
x & =33(\bmod 157)
\end{aligned}
$$

Here is a result which is related to Fermat's Theorem.
Theorem. (Wilson's Theorem) p is prime if and only if

$$
(p-1)!=-1(\bmod p)
$$

Proof. If p is prime, consider the numbers in $\{1,2, \ldots p-1\}$. Note that if $x=x^{-1}(\bmod p)$, then $x \cdot x=1(\bmod p)$, so

$$
\begin{aligned}
x^{2}-1 & =0(\bmod p) \\
(x-1)(x+1) & =0(\bmod p)
\end{aligned}
$$

Hence, $p \mid(x-1)(x+1)$, and by Euclid's lemma either $p \mid x-1$ and $x=1(\bmod p)$ or $p \mid x+1$ and $x=-1=p-1(\bmod p)$.

In other words, the only two numbers in $\{1,2, \ldots p-1\}$ which are their own multiplicative inverses are 1 and $p-1$. The other numbers in this set pair up as a and a^{-1} with $a \neq a^{-1}(\bmod p)$. Hence, the product simplifies to

$$
1 \cdot(\text { pairs whose product is } 1) \cdot(-1)=-1(\bmod p) .
$$

On the other hand, if p is not prime, then p is composite. If $p=a b$ where $1<a<b<p$, then

$$
(p-1)!=1 \cdots a \cdots b \cdot(p-1)=0(\bmod p)
$$

Thus, $(p-1)!\neq-1(\bmod p)$.
The only other possibility is that $p=q^{2}$, where q is a prime.
If $q>2$, then

$$
p=q^{2}>2 q>q
$$

Then both $2 q$ and q appear in the set $\{1,2, \ldots p-1\}$, so the product $1 \cdot 2 \cdots(p-1)$ contains a factor of $2 q \cdot q=2 p=0 \bmod p$. Once again, $(p-1)!=0 \neq-1(\bmod p)$.

The final case is $q=2$ and $p=q^{2}=4$. Then

$$
(p-1)!=1 \cdot 2 \cdot 3=6=2 \neq 0(\bmod 4)
$$

Example. 131 is prime. Reduce $\frac{130!}{33}(\bmod 131)$ to a number in $\{0,1, \ldots 130\}$.
By Wilson's Theorem, $130!=-1(\bmod 131)$. So

$$
\begin{aligned}
x & =\frac{130!}{33}(\bmod 131) \\
33 x & =130!=-1(\bmod 131) \\
4 \cdot 33 x & =4 \cdot(-1)(\bmod 131) \\
x & =-4=127(\bmod 131)
\end{aligned}
$$

