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The Universal Property of the Quotient

Let H ⊳ G. Then G/H becomes a group under coset multiplication. Define the quotient map (or
canonical projection) π : G → G/H by

π(g) = gH.

Proposition. If H ⊳ G, the quotient map π : G → G/H is a surjective homomorphism with kernel H.

Proof. If a, b ∈ G, then

π(ab) = (ab)H = aH · bH = π(a)π(b).

Therefore, π is a group map.
Obviously, if gH ∈ G/H, then π(g) = gH. Hence, π is surjective.
Finally, I’ll show that kerπ = H. If h ∈ H, then π(h) = hH = H, and H is the identity in G/H.

Therefore, h ∈ kerπ, so H ⊂ kerπ.
Conversely, suppose g ∈ kerπ. Then π(g) = H, so gH = H, so g ∈ H. Therefore, kerπ ⊂ H, and hence

H = kerπ.

The preceding lemma shows that every normal subgroup is the kernel of a homomorphism: If H is a
normal subgroup of G, then H = kerπ, where π : G → G/H is the quotient map. On the other hand, the
kernel of a homomorphism is a normal subgroup.

Corollary. Normal subgroups are exactly the kernels of group homomorphisms.

Normality was defined with the idea of imposing a condition on subgroups which would make the set
of cosets into a group. Now an apparently independent notion — that of a homomorphism — gives rise to
the same idea! This strongly suggests that the definition of a normal subgroup was a good one.

You can think of quotient groups in an even more subtle way. The general theme is something like this.
In modern mathematics, it is important to study not only objects — like groups — but the maps between
objects — in this case, group homomorphisms. The maps, after all, describe the relationships between
different objects. (This theme is elaborated in a branch of mathematics called category theory.)

It turns out that more is true. In a sense, the maps carry all of the information about the objects; one
could even be perverse and “build up” objects out of maps! I won’t go to such extremes, but in some cases,
an object can be characterized by certain maps. Here’s an important example.

Theorem. (Universal Property of the Quotient) Let H ⊳G, and let φ : G → K be a group homomor-
phism such that H ⊂ kerφ. Then there is a unique homomorphism φ̃ : G/H → K such that the following
diagram commutes:

G

π





y

ց φ

G/H −→
φ̃

K

(To say that the diagram commutes means that φ̃ · π = φ.)

Proof. Define φ̃ : G/H → K by

φ̃(gH) = φ(g).

This is forced by the requirement that φ̃π = φ, since plugging g ∈ G into both sides yields φ̃π(g) = φ(g),
or φ̃(gH) = φ(g).

I need to check that this map is well-defined. The point is that a given coset gH may in general be
written as g′H, where g 6= g′. I must verify that the result φ(g) or φ(g′) is the same regardless of how I write
the coset.
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(If φ(g) 6= φ(g′) in this situation, then a single input — the coset gH = g′H — produces different
outputs, which contradicts what it means to be a function.)

So suppose that gH = g′H, so g = g′h for some h ∈ H.

φ̃(gH) = φ(g) = φ(g′h) = φ(g′)φ(h) = φ(g′) · 1 = φ(g′) = φ̃(g′H).

This shows that φ̃ is indeed well-defined.
I was forced to define φ̃ as I did in order to make the diagram commute. Hence, φ̃ is unique.
Now I’ll show that φ̃ is a homomorphism. Let a, b ∈ G. Then

φ̃ ((aH)(bH)) = φ̃ ((ab)H) = φ(ab) = φ(a)φ(b) = φ̃(aH)φ̃(bH).

Therefore, φ̃ is a homomorphism.

The universal property of the quotient is an important tool in constructing group maps: To define a
map out of a quotient group G/H, define a map out of G which maps H to 1.

G
G’

H

j

1

The map you construct goes from G to G′; the universal property automatically constructs a map
G/H → G′ for you. The advantage of using the universal property rather than defining a map out of G/H
directly is that you don’t repeat the verification that the map is well-defined — it’s been done once and for
all in the proof above.

Should you ever need to know how the magic map φ̃ is defined, refer to the proof (and the commutativity
of the diagram).

Remarks. (a) Many other constructions are characterized by universal properties. In each case, one finds
that the appropriate conditions imply the existence of a unique map with certain properties.

(a) The use of diagrams of maps — particularly commutative ones — is pervasive in modern mathe-
matics. They are a powerful language, and another outgrowth of the categorical point of view. In general,
one says a diagram commutes if following the “paths” indicated by the arrows (maps) in different ways
between two objects produces the same result. For example, consider the diagram

A
f

−→ B

g





y





y

h

C −→
i

D

To say that this diagram commutes means that h · f = i · g.

Example. Use the universal property to show that f : Z8 → Z12 given by f(x) = 3x is a well-defined group
map.
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I can regard Z8 as
Z

8Z
. To define f , begin by defining f ′ : Z → Z12 by

f ′(x) = 3x.

Let 8n ∈ 8Z. Then since 24 is a multiple of 12,

f ′(8n) = 3 · 8n = 24n = 0.

This means that f ′ maps the subgroup 8Z of Z to the identity 0 ∈ Z12. By the universal property of

the quotient, f ′ induces a map f :
Z

8Z
→ Z12 given by

f(x+ 8Z) = 3x.

I can identify x + 8Z with x (mod 8) ∈ Z8 by reducing mod 8 if needed. (Thus, 11 + 8Z ∈
Z

8Z
is

identified with 3 ∈ Z8.) Then the definition of f becomes

f(x) = 3x.

This is the group map I wanted to construct.

Example. (Using the universal property to construct a group map) Use the universal property to

construct a homomorphism from the quotient group
Z× Z

〈(5, 2)〉
to Z.

The universal property tells me to construct a group map from Z × Z to Z which contains 〈(5, 2)〉 in
its kernel — that is, which sends 〈(5, 2)〉 to 0. Now 〈(5, 2)〉 consists of all multiples of (5, 2), so what I’m
looking for is a group map which sends (5, 2) to 0.

To ensure that what I get is a group map, I should probably guess a linear function — something like

f(x, y) = ax+ by.

If f(5, 2) = 0, then 5a+ 2b = 0. There is no question of solving this equation for a and b, since there is
one equation and two variables. But I just need some a and b that work — and one “obvious” way to do
this is to set a = 2 and b = −5, since

5(2) + 2(−5) = 0.

Notice that a = 8, b = −20 would work, too. In fact, there are infinitely many possibilities.
So I define f : Z× Z → Z by

f(x, y) = 2x− 5y.

It’s easy to check that this is a group map, and I constructed it so that 〈(5, 2)〉 ⊂ ker f . Therefore, the

universal property automatically produces a group map f̃ :
Z× Z

〈(5, 2)〉
→ Z. It is defined by

f̃ ((x, y) + 〈(5, 2)〉) = 2x− 5y.

Why not just define the map this way to begin with? If you did, you’d have to check that the map was
well-defined. It’s less messy to use the universal property to construct the map as above.
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