## Antiderivatives

$F(x)$ is an antiderivative of $f(x)$ if

$$
\frac{d F(x)}{d x}=f(x)
$$

Notation:

$$
\int f(x) d x=F(x)+C
$$

For example,

$$
\int x^{3} d x=\frac{1}{4} x^{4}+C, \quad \text { because } \quad \frac{d}{d x}\left(\frac{1}{4} x^{4}\right)=x^{3}
$$

In fact, all of the following functions are antiderivatives of $x^{3}$, because they all differentiate to $x^{3}$ :

$$
\frac{1}{4} x^{4}, \quad \frac{1}{4} x^{4}+1, \quad \frac{1}{4} x^{4}-13, \quad \frac{1}{4} x^{4}+157
$$

This is the reason for the " $+C$ " in the notation: You can add any constant to the "basic" antiderivative $\frac{1}{4} x^{4}$
$x^{4}$ and come up with another antiderivative.
$C$ is called the arbitrary constant. $\quad \square$
Remark. (a) Antiderivatives are often referred to as indefinite integrals, and sometimes I'll refer to $\int f(x) d x$ as "the integral of $f(x)$ with respect to $x$ ". This terminology is actually a bit misleading, but it's traditional, so I'll often use it. There is another kind of "integral" - the definite integral - which is probably more deserving of the name.
(b) The notation " $\int f(x) d x$ " will also be used for definite integrals. The integral sign $\int$ is a stretched-out " $S$ ", and comes from the fact that definite integrals are defined in terms of sums.
" $\int() d x "$ is a mathematical object called an operator, which roughly speaking is a function which takes functions as inputs and produces functions as outputs. Despite appearances, " $d x$ " isn't a separate thing; in fact, " $\int() d x$ " is the whole name of the antidervative operator. It's a weird name - it consists of three symbols (" $\int$ ", " d ", and " x ") , and has a space between the " $\int$ " and the " $d x$ " for the input function.

I'll come back to this again when I discuss substitution, since at that point this can become a source of confusion.

Every differentiation formula has a corresponding antidifferentiation formula. This makes it easy to derive antidifferentiation rules from the rules for differentiation.

Theorem. (Power Rule) For $n \neq-1$,

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
$$

Proof. This follows from the fact that

$$
\frac{d}{d x} \frac{1}{n+1} x^{n+1}=x^{n}
$$

(Notice that the expression on the left is undefined if $n=-1$.)

Example. Compute the following antiderivatives:
(a) $\int x^{100} d x$.
(b) $\int \sqrt{x} d x$.
(c) $\int \frac{1}{x^{5}} d x$.
(d) $\int \frac{1}{x^{5 / 3}} d x$.
(a)

$$
\int x^{100} d x=\frac{1}{101} x^{101}+C
$$

(b)

$$
\int \sqrt{x} d x=\int x^{1 / 2} d x=\frac{2}{3} x^{3 / 2}+C
$$

(c)

$$
\int \frac{1}{x^{5}} d x=\int x^{-5} d x=-\frac{1}{4} x^{-4}+C
$$

(d)

$$
\int \frac{1}{x^{5 / 3}} d x=\int x^{-5 / 3} d x=-\frac{3}{2} x^{-2 / 3}+C
$$

## Theorem.

$$
\begin{aligned}
& \int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x \\
& \int k \cdot f(x) d x=k \int f(x) d x, \quad \text { if } k \text { is a constant. } \\
& \int k d x=k x+\int f(x) d x, \quad \text { if } k \text { is a constant. }
\end{aligned}
$$

Proof. I'll prove the first formula by way of example; see if you can prove the others.
Suppose that

$$
\frac{d}{d x} F(x)=f(x) \quad \text { and } \quad \frac{d}{d x} G(x)=g(x)
$$

By definition, this means that

$$
\int f(x) d x=F(x)+C \quad \text { and } \quad \int g(x) d x=G(x)+C
$$

By the rule for the derivative of a sum,

$$
\frac{d}{d x}(F(x)+G(x))=\frac{d}{d x} F(x)+\frac{d}{d x} G(x)=f(x)+g(x) .
$$

By definition, this means that

$$
\int(f(x)+g(x)) d x=F(x)+G(x)+C
$$

Example. Compute the following antiderivatives:
(a) $\int 8 x^{10} d x$.
(b) $\int\left(3 x^{4}+2 x+5\right) d x$.
(a)

$$
\int 8 x^{10} d x=8 \int x^{10} d x=\frac{8}{11} x^{11}+C
$$

(b)

$$
\int\left(3 x^{4}+2 x+5\right) d x=3 \int x^{4} d x+2 \int x d x+5 \int d x=\frac{3}{5} x^{5}+x^{2}+5 x+C
$$

Since the derivative of a product is not the product of the derivatives, you can't expect that it would work that way for antiderivatives, either.

Example. Compute $\int\left(x^{2}-1\right)\left(x^{4}+2\right) d x$.
To do this antiderivative, I don't antidifferentiate $x^{2}-1$ and $x^{4}+2$ separately. Instead, I multiply out, then use the rules I discussed above.

$$
\int\left(x^{2}-1\right)\left(x^{4}+2\right) d x=\int\left(x^{6}-x^{4}+2 x^{2}-2\right) d x=\frac{1}{7} x^{7}-\frac{1}{5} x^{5}+\frac{2}{3} x^{3}-2 x+C
$$

Likewise, the derivative of a quotient is not the quotient of the derivatives, and it doesn't work that way for antiderivatives.

Example. Compute $\int \frac{x^{4}+1}{x^{2}} d x$.
Don't antidifferentiate $x^{4}+1$ and $x^{2}$ separately! Instead, divide the bottom into the top:

$$
\int \frac{x^{4}+1}{x^{2}} d x=\int\left(x^{2}+x^{-2}\right) d x=\frac{1}{3} x^{3}-x^{-1}+C .
$$

Every differentiation rule gives an antidifferentiation rule. So

$$
\frac{d}{d x} \sin x=\cos x \quad \text { means that } \quad \int \cos x d x=\sin x+C
$$

Example. Compute $\int\left(5 x^{7}+4 \cos x\right) d x$.

For example,

$$
\int\left(5 x^{7}+4 \cos x\right) d x=\frac{5}{8} x^{8}+4 \sin x+C
$$

Example. $\frac{d y}{d x}=\left(x^{2}+\frac{1}{x^{2}}\right)^{2}$ and $y(1)=\frac{1}{5}$. Find $y$.
To find $y$, antidifferentiate $\frac{d y}{d x}$ :

$$
y=\int \frac{d y}{d x} d x=\int\left(x^{2}+\frac{1}{x^{2}}\right)^{2} d x=\int\left(x^{4}+2+\frac{1}{x^{4}}\right) d x=\frac{1}{5} x^{5}+2 x-\frac{2}{3} \frac{1}{x^{3}}+C
$$

$y(1)=\frac{1}{5}:$

$$
\begin{aligned}
\frac{1}{5}=y(1) & =\frac{1}{5}+2-\frac{2}{3}+C \\
C & =-\frac{4}{3}
\end{aligned}
$$

Therefore,

$$
y=\frac{1}{5} x^{5}+2 x-\frac{2}{3} \frac{1}{x^{3}}-\frac{4}{3} .
$$

This process is a simple example of solving a differential equation with an initial condition.

Example. Suppose an object moves with constant acceleration $a$. Its initial velocity is $v_{0}$, and its initial position is $s_{0}$. Find its position function $s(t)$.

First, $a(t)=v^{\prime}(t)=\frac{d v}{d t}$, so

$$
v=\int a(t) d t=\int a d t=a t+C
$$

When $t=0, v=v_{0}$, so

$$
v_{0}=a \cdot 0+C, \quad C=v_{0} .
$$

Therefore,

$$
v=a t+v_{0} .
$$

Next, $v(t)=s^{\prime}(t)=\frac{d s}{d t}$, so

$$
s=\int v(t) d t=\int\left(a t+v_{0}\right) d t=\frac{1}{2} a t^{2}+v_{0} t+D .
$$

When $t=0, s=s_{0}$ :

$$
s_{0}=\frac{1}{2} a \cdot 0+v_{0} \cdot 0+D, \quad D=s_{0}
$$

Therefore,

$$
s=\frac{1}{2} a t^{2}+v_{0} t+s_{0}
$$

For example, an object falling near the surface of the earth experiences a constant acceleration of -32 feet per second per second (negative, since the object's height $s$ is decreasing). Its height at time $t$ is

$$
s=-16 t^{2}+v_{0} t+s_{0}
$$

Here $v_{0}$ is its initial velocity and $s_{0}$ is the height from which it's dropped.

