The Chain Rule

The Chain Rule computes the derivative of the composite of two functions. The composite $(f \circ g)(x)$ is just " g inside f " - that is,

$$
(f \circ g)(x)=f(g(x))
$$

(Note that this is not multiplication!)
Here are some examples:

$$
\begin{aligned}
& \left(x^{3}+x^{2}-7 x+1\right)^{99} \quad \text { is } \quad g(x)=x^{3}+x^{2}-7 x+1 \quad \text { inside } \quad f(x)=x^{99} . \\
& (\quad)^{99} \\
& x^{3}+x^{\uparrow}-7 x+1 \\
& \frac{1}{x^{2}-x-1} \quad \text { is } \quad g(x)=x^{2}-x-1 \quad \text { inside } \quad f(x)=\frac{1}{x} \text {. } \\
& \frac{1}{(\quad)} \\
& x^{2}-x-1 \\
& \sin \left(x^{2}\right) \text { is } g(x)=x^{2} \quad \text { inside } f(x)=\sin x . \\
& \sin \left(\begin{array}{c}
\\
\\
\\
\\
x^{2}
\end{array}\right.
\end{aligned}
$$

Here's a more complicated example:
$\cos \frac{1}{x^{2}-2 x+5} \quad$ is $\quad h(x)=x^{2}-2 x+5 \quad$ inside $\quad g(x)=\frac{1}{x} \quad$ inside $\quad f(x)=\cos x$.

One way to tell which function is "inside" and which is "outside" is to think about how you would plug numbers in. For example, take $p(x)=\sin \left(x^{2}\right)$. What would you do to compute $p(1.7)$ on your calculator? First, you'd square $1.7-1.7^{2}=1.89$. Next, you'd take the sine of that $-\sin 1.89 \approx 0.94949$.

The function you did first - squaring - is the inner function. The function you did second - sine is the outer function.

Example. Suppose

$$
f(x)=\frac{1}{x} \quad \text { and } \quad g(x)=x^{2}+1
$$

Compute $(f \circ g)(x),(g \circ f)(x)$, and $(f \circ f)(x)$.

$$
\begin{gathered}
(f \circ g)(x)=f(g(x))=f\left(x^{2}+1\right)=\frac{1}{x^{2}+1} \\
(g \circ f)(x)=g(f(x))=g\left(\frac{1}{x}\right)=\frac{1}{\left(\frac{1}{x}\right)^{2}+1}=\frac{x^{2}}{1+x^{2}} \\
(f \circ f)(x)=f(f(x))=f\left(\frac{1}{x}\right)=\frac{1}{\frac{1}{x}}=x
\end{gathered}
$$

Theorem. (Chain Rule) If f is differentiable at a and g is differentiable at $f(a)$, then the composite function $(g \circ f)(x)=g(f(x))$ is differentiable at a, and its derivative is

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

In functional form, this is

$$
\frac{d}{d x}(g \circ f)(x)=\frac{d}{d x} g(f(x))=g^{\prime}(f(x)) f^{\prime}(x)
$$

In words, you differentiate the outer function while holding the inner function fixed, then you differentiate the inner function.

The proof is pretty technical, and you can omit it if you're taking a typical first-term calculus course. It is given at the end. In the examples, I'll focus on how you use the Chain Rule to compute derivatives.

Example. Compute $\frac{d}{d x}\left(x^{3}+x^{2}-7 x+1\right)^{99}$.
$\left(x^{3}+x^{2}-7 x+1\right)^{99}$ looks like this:

$$
\begin{gathered}
\uparrow \\
x^{3}+x^{2}-7 x+1
\end{gathered}
$$

Differentiate the outer function (junk) ${ }^{99}$, obtaining 99 (junk) ${ }^{98}$. What is "junk"? It's $x^{3}+x^{2}-7 x+1$. The first term in the Chain Rule is $99\left(x^{3}+x^{2}-7 x+1\right)^{98}$. (Notice that I differentiated the outer function, temporarily leaving the inner one untouched.)

Next, differentiate the inner function. The derivative of $x^{3}+x^{2}-7 x+1$ is $3 x^{2}+2 x-7$.
Therefore,

$$
\frac{d}{d x}\left(x^{3}+x^{2}-7 x+1\right)^{99}=99\left(x^{3}+x^{2}-7 x+1\right)^{98} \cdot\left(3 x^{2}+2 x-7\right)
$$

Example. Compute $\frac{d}{d x}\left(\frac{1}{x^{2}-x-1}\right)$.

While it would be correct to use the Quotient Rule, it's unnecessary.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{x^{2}-x-1}\right)= & -\frac{1}{\left(x^{2}-x-1\right)^{2}}
\end{aligned} \quad(2 x-1)
$$

That is,

$$
\frac{d}{d x}\left(\frac{1}{x^{2}-x-1}\right)=\left(-\frac{1}{\left(x^{2}-x-1\right)^{2}}\right)(2 x-1)
$$

In general, you do not need to use the Quotient Rule to differentiate things of the form

$$
\frac{\text { number }}{\text { junk }} \text { or } \frac{\text { junk }}{\text { number }} \text {. }
$$

In the first case, use the Chain Rule as above. In the second case, divide the top by the number on the bottom.

Example. Compute $\frac{d}{d x} \frac{1}{x+5 x^{3}}$.

$$
\frac{d}{d x} \frac{1}{x+5 x^{3}}=\frac{d}{d x}\left(x+5 x^{3}\right)^{-1}=-\left(x+5 x^{3}\right)^{-2} \cdot\left(1+15 x^{2}\right)
$$

In some of the examples which follow, I'll use the derivative formulas for $\sin x$ and $\cos x$. They are:

$$
\frac{d}{d x} \sin x=\cos x \quad \text { and } \quad \frac{d}{d x} \cos x=-\sin x
$$

Example. Compute $\frac{d}{d x} \sin \left(x^{2}\right)$.

$$
\begin{array}{ccc}
\frac{d}{d x} \sin \left(x^{2}\right)= & \left(\cos \left(x^{2}\right)\right) & 2 x \\
& \uparrow & \uparrow \\
& \text { the derivative of } & \\
\sin (\text { junk }) & \text { the derivative of } \\
& & x^{2}
\end{array}
$$

Example. Compute $\frac{d}{d x} \cos \frac{1}{x^{2}-2 x+5}$.

$$
\begin{array}{lccc}
\text { Differentiating } & \cos (\mathrm{junk}) & \text { gives } & -\sin \frac{1}{x^{2}-2 x+5} \\
\text { Differentiating } & \frac{1}{\text { junk }} & \text { gives } & -\frac{1}{\left(x^{2}-2 x+5\right)^{2}} \\
\text { Differentiating } & x^{2}-2 x+5 & \text { gives } & 2 x-2
\end{array}
$$

Therefore,

$$
\frac{d}{d x} \cos \frac{1}{x^{2}-2 x+5}=\left(-\sin \frac{1}{x^{2}-2 x+5}\right)\left(-\frac{1}{\left(x^{2}-2 x+5\right)^{2}}\right)(2 x-2)
$$

Example. f and g are differentiable functions. A table of some values for these functions is shown below.

	$x=3$	$x=7$
$f(x)$	7	14
$g(x)$	-5	0
$f^{\prime}(x)$	6	2
$g^{\prime}(x)$	10	11

Find $(g \circ f)^{\prime}(3)$.
By the Chain Rule,

$$
(g \circ f)^{\prime}(3)=g^{\prime}(f(3)) \cdot f^{\prime}(3)=g^{\prime}(7) \cdot f^{\prime}(3)=11 \cdot 6=66
$$

Example. Compute $\frac{d}{d x} \sin (\sin x)$.

$$
\frac{d}{d x} \sin (\sin x)=[\cos (\sin x)] \cdot \cos x
$$

Example. (a) Compute $\frac{d}{d x}\left[(\sin x)^{2}+\sin \left(x^{2}\right)\right]$.
(b) Draw a picture to show the difference between the functions $(\sin x)^{2}$ and $\sin \left(x^{2}\right)$, considered as composites of $f(x)=\sin x$ and $g(x)=x^{2}$.
(a)

$$
\frac{d}{d x}\left[(\sin x)^{2}+\sin \left(x^{2}\right)\right]=2(\sin x)(\cos x)+2 x \cdot \cos \left(x^{2}\right)
$$

(b) Here's a picture showing the difference between $(\sin x)^{2}$ and $\sin \left(x^{2}\right)$:

In the first case, the outer function is the squaring function; in the second case, the outer function is the sine function. $\quad \square$

Example. The derivative formulas for $\tan x$ and $\cot x$ are

$$
\frac{d}{d x} \tan x=(\sec x)^{2} \quad \text { and } \quad \frac{d}{d x} \cot x=-(\csc x)^{2}
$$

Taking these for granted, find:
(a) $\frac{d}{d x} \tan \frac{1}{x}$.
(b) $\frac{d}{d x} \sqrt{\cot (3 x+1)}$.
(a)

$$
\frac{d}{d x} \tan \frac{1}{x}=\left(\sec \frac{1}{x}\right)^{2} \cdot\left(-\frac{1}{x^{2}}\right) .
$$

(b)

$$
\frac{d}{d x} \sqrt{\cot (3 x+1)}=\frac{1}{2}(\cot (3 x+1))^{-1 / 2} \cdot[-\cot (3 x+1) \csc (3 x+1)] \cdot(3) .
$$

Example. Compute $\frac{d}{d x}\left(1+\left(1+x^{2}\right)^{2}\right)^{2}$.
Differentiate from the outside in:

$$
\frac{d}{d x}\left(1+\left(1+x^{2}\right)^{2}\right)^{2}=2\left(1+\left(1+x^{2}\right)^{2}\right) \cdot 2\left(1+x^{2}\right) \cdot(2 x) \cdot
$$

Example. Where does the graph of $f(x)=\left(x^{2}-2 x+7\right)^{-50}$ have a horizontal tangent?

$$
f^{\prime}(x)=(-50)\left(x^{2}-2 x+7\right)^{-51} \cdot(2 x-2)=\frac{(-50)(2 x-2)}{\left(x^{2}-2 x+7\right)^{51}} .
$$

Set $f^{\prime}(x)=0$ and solve for x :

$$
\begin{aligned}
\frac{(-50)(2 x-2)}{\left(x^{2}-2 x+7\right)^{51}} & =0 \\
-50(2 x-2) & =0 \quad \\
2 x & =2 \\
x & =1
\end{aligned}
$$

The proof of the Chain Rule.

This section is fairly technical, so you can probably skip it if you're reading this for first-term calculus.
Lemma. If f is differentiable at a, there is a continuous function $p(h)$ which satisfies:
(a) $\lim _{h \rightarrow 0} p(h)=0$.
(b)

$$
f(a+h)-f(a)=\left(f^{\prime}(a)+p(h)\right) \cdot h .
$$

Proof. Define

$$
p(h)= \begin{cases}\frac{f(a+h)-f(a)}{h}-f^{\prime}(a) & \text { if } h \neq 0 \\ 0 & \text { if } h=0\end{cases}
$$

Then

$$
\begin{aligned}
\lim _{h \rightarrow 0} p(h) & =\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}-f^{\prime}(a)\right) \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}-f^{\prime}(a) \\
& =f^{\prime}(a)-f^{\prime}(a) \\
& =0
\end{aligned}
$$

Thus,

$$
\lim _{h \rightarrow 0} p(h)=0=p(0)
$$

Hence, p is a continuous function. This proves (a).
Note that for $h \neq 0$,

$$
\begin{aligned}
\frac{f(a+h)-f(a)}{h}-f^{\prime}(a) & =p(h) \\
\frac{f(a+h)-f(a)}{h} & =f^{\prime}(a)+p(h) \\
f(a+h)-f(a) & =\left(f^{\prime}(a)+p(h)\right) \cdot h
\end{aligned}
$$

For $h=0$, this equation is true, since both sides are 0 . This proves (b).
Theorem. (Chain Rule) Suppose that $f(a)$. Assume f is differentiable at a and g is differentiable at $f(a)$. Then the composite $(g \circ f)(x)=g(f(x))$ is differentiable at a, and

$$
(g \circ f)(x)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a)
$$

Proof. By the lemma, there are functions p and q such that

$$
\begin{gathered}
\lim _{h \rightarrow 0} p(h)=0 \quad \text { and } \quad \lim _{k \rightarrow 0} q(k)=0, \\
f(a+h)-f(a)=\left(f^{\prime}(a)+p(h)\right) \cdot h, \\
g(f(a)+k)-g(f(a))=\left(g^{\prime}(f(a))+q(k)\right) \cdot k
\end{gathered}
$$

Here $k=f(a+h)-f(a)$. Thus, as $h \rightarrow 0$, I have $k \rightarrow 0$. By the rule for the limit of a composite, this means that as $h \rightarrow 0$, I have $q(k) \rightarrow 0$.

The next few steps may be a little hard to follow, so I'll give some detail before I do the computation. I will take the equation $g(f(a)+k)-g(f(a))=\left(g^{\prime}(f(a))+q(k)\right) \cdot k$ and substitute as follows:

1. On the left side, I'll plug in $k=f(a+h)-f(a)$.
2. On the right side I'll plug in $k=f(a+h)-f(a)=\left(f^{\prime}(a)+p(h)\right) \cdot h$ in for k.

Now here's the computation:

$$
\begin{aligned}
g(f(a)+k)-g(f(a)) & =\left(g^{\prime}(f(a))+q(k)\right) \cdot k \\
g(f(a)+f(a+h)-f(a))-g(f(a)) & =\left(g^{\prime}(f(a))+q(k)\right) \cdot\left(\left(f^{\prime}(a)+p(h)\right) \cdot h\right) \\
g(f(a+h))-g(f(a)) & =\left(g^{\prime}(f(a))+q(k)\right) \cdot\left(f^{\prime}(a)+p(h)\right) \cdot h \\
\frac{g(f(a+h))-g(f(a))}{h} & =\left(g^{\prime}(f(a))+q(k)\right) \cdot\left(f^{\prime}(a)+p(h)\right)
\end{aligned}
$$

Now take the limit as $h \rightarrow 0$ on both sides. Remember that as $h \rightarrow 0$, I have both $p(h) \rightarrow 0$ and $q(k) \rightarrow 0$.

$$
(g \circ f)(x)^{\prime}(a)=\lim _{h \rightarrow 0} \frac{g(f(a+h))-g(f(a))}{h}=\lim _{h \rightarrow 0}\left(g^{\prime}(f(a))+q(k)\right) \cdot\left(f^{\prime}(a)+p(h)\right)=g^{\prime}(f(a)) \cdot f^{\prime}(a)
$$

