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The Chain Rule

The Chain Rule computes the derivative of the composite of two functions. The composite (f ◦g)(x)
is just “g inside f” — that is,

(f ◦ g)(x) = f (g(x)) .

(Note that this is not multiplication!)
Here are some examples:

(x3 + x2 − 7x+ 1)99 is g(x) = x3 + x2 − 7x+ 1 inside f(x) = x99.

( )99

↑

x3 + x2 − 7x+ 1

1

x2 − x− 1
is g(x) = x2 − x− 1 inside f(x) =

1

x
.

1

( )
↑

x2 − x− 1

sin(x2) is g(x) = x2 inside f(x) = sinx.

sin ( )
↑

x2

Here’s a more complicated example:

cos
1

x2 − 2x+ 5
is h(x) = x2 − 2x+ 5 inside g(x) =

1

x
inside f(x) = cosx.

cos ( )
↑

1

( )

↑

x2 − 2x+ 5

One way to tell which function is “inside” and which is “outside” is to think about how you would plug
numbers in. For example, take p(x) = sin(x2). What would you do to compute p(1.7) on your calculator?
First, you’d square 1.7 — 1.72 = 1.89. Next, you’d take the sine of that — sin 1.89 ≈ 0.94949.

The function you did first — squaring — is the inner function. The function you did second — sine —
is the outer function.

Example. Suppose

f(x) =
1

x
and g(x) = x2 + 1.

1



Compute (f ◦ g)(x), (g ◦ f)(x), and (f ◦ f)(x).

(f ◦ g)(x) = f (g(x)) = f
(

x2 + 1
)

=
1

x2 + 1
.

(g ◦ f)(x) = g (f(x)) = g

(

1

x

)

=
1

(

1

x

)2

+ 1

=
x2

1 + x2
.

(f ◦ f)(x) = f (f(x)) = f

(

1

x

)

=
1
1

x

= x.

Theorem. (Chain Rule) If f is differentiable at a and g is differentiable at f(a), then the composite
function (g ◦ f)(x) = g(f(x)) is differentiable at a, and its derivative is

(g ◦ f)′(a) = g′ (f(a)) f ′(a).

In functional form, this is

d

dx
(g ◦ f)(x) =

d

dx
g (f(x)) = g′ (f(x)) f ′(x).

In words, you differentiate the outer function while holding the inner function fixed, then you differentiate
the inner function.

The proof is pretty technical, and you can omit it if you’re taking a typical first-term calculus course.
It is given at the end. In the examples, I’ll focus on how you use the Chain Rule to compute derivatives.

Example. Compute
d

dx
(x3 + x2 − 7x+ 1)99.

(x3 + x2 − 7x+ 1)99 looks like this:

( )99

↑

x3 + x2 − 7x+ 1

Differentiate the outer function (junk)99, obtaining 99(junk)98. What is “junk”? It’s x3 + x2 − 7x+ 1.
The first term in the Chain Rule is 99(x3 + x2 − 7x+ 1)98. (Notice that I differentiated the outer function,
temporarily leaving the inner one untouched.)

Next, differentiate the inner function. The derivative of x3 + x2 − 7x+ 1 is 3x2 + 2x− 7.
Therefore,

d

dx
(x3 + x2 − 7x+ 1)99 = 99(x3 + x2 − 7x+ 1)98 · (3x2 + 2x− 7).

Example. Compute
d

dx

(

1

x2 − x− 1

)

.
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While it would be correct to use the Quotient Rule, it’s unnecessary.

d

dx

(

1

x2 − x− 1

)

= −
1

(x2 − x− 1)2
· (2x− 1)

↑ ↑

the derivative of the derivative of
1

junk
x2 − x− 1

That is,
d

dx

(

1

x2 − x− 1

)

=

(

−
1

(x2 − x− 1)2

)

(2x− 1).

In general, you do not need to use the Quotient Rule to differentiate things of the form

number

junk
or

junk

number
.

In the first case, use the Chain Rule as above. In the second case, divide the top by the number on the
bottom.

Example. Compute
d

dx

1

x+ 5x3
.

d

dx

1

x+ 5x3
=

d

dx
(x+ 5x3)−1 = −(x+ 5x3)−2 · (1 + 15x2).

In some of the examples which follow, I’ll use the derivative formulas for sinx and cosx. They are:

d

dx
sinx = cosx and

d

dx
cosx = − sinx.

Example. Compute
d

dx
sin(x2).

d

dx
sin(x2) =

(

cos(x2)
)

· 2x

↑ ↑

the derivative of the derivative of
sin(junk) x2

Example. Compute
d

dx
cos

1

x2 − 2x+ 5
.

Differentiating cos(junk) gives − sin
1

x2 − 2x+ 5

Differentiating
1

junk
gives −

1

(x2 − 2x+ 5)2

Differentiating x2 − 2x+ 5 gives 2x− 2

Therefore,

d

dx
cos

1

x2 − 2x+ 5
=

(

− sin
1

x2 − 2x+ 5

)(

−
1

(x2 − 2x+ 5)2

)

(2x− 2) .
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Example. f and g are differentiable functions. A table of some values for these functions is shown below.

x = 3 x = 7

f(x) 7 14

g(x) −5 0

f ′(x) 6 2

g′(x) 10 11

Find (g ◦ f)′(3).

By the Chain Rule,

(g ◦ f)′(3) = g′ (f(3)) · f ′(3) = g′(7) · f ′(3) = 11 · 6 = 66.

Example. Compute
d

dx
sin(sinx).

d

dx
sin(sinx) = [cos(sinx)] · cosx.

Example. (a) Compute
d

dx

[

(sinx)2 + sin(x2)
]

.

(b) Draw a picture to show the difference between the functions (sinx)2 and sin(x2), considered as composites
of f(x) = sinx and g(x) = x2.

(a)
d

dx

[

(sinx)2 + sin(x2)
]

= 2(sinx)(cosx) + 2x · cos(x2).

(b) Here’s a picture showing the difference between (sinx)2 and sin(x2):

( )
2

sin ( )
↑ ↑

sinx x2

In the first case, the outer function is the squaring function; in the second case, the outer function is
the sine function.

Example. The derivative formulas for tanx and cotx are

d

dx
tanx = (secx)2 and

d

dx
cotx = −(cscx)2.

Taking these for granted, find:

(a)
d

dx
tan

1

x
.
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(b)
d

dx

√

cot(3x+ 1).

(a)

d

dx
tan

1

x
=

(

sec
1

x

)2

·

(

−
1

x2

)

.

(b)
d

dx

√

cot(3x+ 1) =
1

2
(cot(3x+ 1))

−1/2
· [− cot(3x+ 1) csc(3x+ 1)] · (3).

Example. Compute
d

dx

(

1 +
(

1 + x2
)2
)2

.

Differentiate from the outside in:

d

dx

(

1 +
(

1 + x2
)2
)2

= 2
(

1 +
(

1 + x2
)2
)

· 2
(

1 + x2
)

· (2x).

Example. Where does the graph of f(x) = (x2 − 2x+ 7)−50 have a horizontal tangent?

f ′(x) = (−50)(x2 − 2x+ 7)−51 · (2x− 2) =
(−50)(2x− 2)

(x2 − 2x+ 7)51
.

Set f ′(x) = 0 and solve for x:
(−50)(2x− 2)

(x2 − 2x+ 7)51
= 0

−50(2x− 2) = 0

2x = 2

x = 1

The proof of the Chain Rule.

This section is fairly technical, so you can probably skip it if you’re reading this for first-term calculus.

Lemma. If f is differentiable at a, there is a continuous function p(h) which satisfies:

(a) lim
h→0

p(h) = 0.

(b)
f(a+ h)− f(a) = (f ′(a) + p(h)) · h.

Proof. Define

p(h) =

{

f(a+ h)− f(a)

h
− f ′(a) if h 6= 0

0 if h = 0
Then

lim
h→0

p(h) = lim
h→0

(

f(a+ h)− f(a)

h
− f ′(a)

)

= lim
h→0

f(a+ h)− f(a)

h
− f ′(a)

= f ′(a)− f ′(a)

= 0
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Thus,
lim
h→0

p(h) = 0 = p(0).

Hence, p is a continuous function. This proves (a).
Note that for h 6= 0,

f(a+ h)− f(a)

h
− f ′(a) = p(h)

f(a+ h)− f(a)

h
= f ′(a) + p(h)

f(a+ h)− f(a) = (f ′(a) + p(h)) · h

For h = 0, this equation is true, since both sides are 0. This proves (b).

Theorem. (Chain Rule) Suppose that f(a). Assume f is differentiable at a and g is differentiable at f(a).
Then the composite (g ◦ f)(x) = g(f(x)) is differentiable at a, and

(g ◦ f)(x)′(a) = g′(f(a)) · f ′(a).

Proof. By the lemma, there are functions p and q such that

lim
h→0

p(h) = 0 and lim
k→0

q(k) = 0,

f(a+ h)− f(a) = (f ′(a) + p(h)) · h,

g(f(a) + k)− g(f(a)) = (g′(f(a)) + q(k)) · k.

Here k = f(a+ h)− f(a). Thus, as h → 0, I have k → 0. By the rule for the limit of a composite, this
means that as h → 0, I have q(k) → 0.

The next few steps may be a little hard to follow, so I’ll give some detail before I do the computation.
I will take the equation g(f(a) + k)− g(f(a)) = (g′(f(a)) + q(k)) · k and substitute as follows:

1. On the left side, I’ll plug in k = f(a+ h)− f(a).

2. On the right side I’ll plug in k = f(a+ h)− f(a) = (f ′(a) + p(h)) · h in for k.

Now here’s the computation:

g(f(a) + k)− g(f(a)) = (g′(f(a)) + q(k)) · k

g (f(a) + f(a+ h)− f(a))− g(f(a)) = (g′(f(a)) + q(k)) · ((f ′(a) + p(h)) · h)

g(f(a+ h))− g(f(a)) = (g′(f(a)) + q(k)) · (f ′(a) + p(h)) · h

g(f(a+ h))− g(f(a))

h
= (g′(f(a)) + q(k)) · (f ′(a) + p(h))

Now take the limit as h → 0 on both sides. Remember that as h → 0, I have both p(h) → 0 and
q(k) → 0.

(g ◦ f)(x)′(a) = lim
h→0

g(f(a+ h))− g(f(a))

h
= lim

h→0

(g′(f(a)) + q(k)) · (f ′(a) + p(h)) = g′(f(a)) · f ′(a).
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