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Continuity

In many cases, you can compute lim
x→a

f(x) by plugging a in for x:

lim
x→a

f(x) = f(a).

For example,

lim
x→3

(2x3 − 5x+ 1) = 2 · 33 − 5 · 3 + 1 = 40.

This situation arises often enough that it has a name.

Definition. A function f(x) is continuous at a if

lim
x→a

f(x) = f(a).

This definition really comprises three things, each of which you need to check to show that f is continuous
at a:

1. f(a) is defined.

2. lim
x→a

f(x) is defined.

3. The two are equal: lim
x→a

f(x) = f(a).

What does this mean geometrically? Here are the three criteria above in pictorial language:

1. “f(a) is defined” means there’s a point on the graph at a.

2. “ lim
x→a

f(x) is defined” means the graph approaches a single numerical value as you get close to a.

3. “ lim
x→a

f(x) = f(a)” means that the value you’re approaching is the value that f actually takes on —

there are “no surprises”.

The first criterion means that there can’t be a hole or gap in the graph. This also rules out vertical
asymptotes. Here are some pictures of these kinds of discontinuities:

a hole

a vertical asymptote
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The second criterion means that the graph can’t “jump” at a. This is a jump discontinuity:

a jump

A jump discontinuity occurs when the left and right-hand limits aren’t equal.
The third criterion means that the graph is “filled in” at x = a as you’d expect. You don’t get close to

a expecting one value and then find that f(a) is something different, as you do below:

a removable discontinuity

This is called a removable discontinuity because you could make the function continuous by filling
in the hole. In terms of limits, it means that lim

x→a
f(x) exists, but lim

x→a
f(x) 6= f(a).

Here are some classes of continuous functions:

(a) A polynomial p(x) is continuous for all x.

(b) |x| is continuous for all x.

(c) Trigonometric functions are continuous wherever they are defined.

(d) ex is continuous for all x and lnx is continuous for x > 0.

(e) n

√
x is continuous for all x for which it’s defined.

The statement about polynomials, for example, follows from a property of limits. If p(x) is a polynomial,
I showed that

lim
x→c

p(x) = p(c).

This is exactly what it means for p(x) to be continuous at c.
For example, f(x) = 10x100 − 15x+ 41 is continuous for all x, since it’s a polynomial.
The statement for |x| is a fairly easy limit proof, but I’ll omit it. And the statements for trig functions,

ex, and lnx depend on careful definitions of these functions; I’ll discuss some of this later. As an example

of the statement about trig functions, tanx is continuous for all x except odd multiples of
π

2
. (tanx is

undefined at odd multiples of
π

2
.)

The limit proof for n

√
x is not too hard, but once you have results on ex and lnx, you can use the fact

that
n

√
x = x1/n = e(ln x)/n.

You have to ensure that the root you’re taking is defined at the point. For example,
√
x is continuous

for x ≥ 0. Remember that
√
x is undefined for x < 0.
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Example. What kind of discontinuity does f(x) =
x2 − 1

x2 − x− 2
have at x = −1?

Note that

lim
x→−1

x2 − 1

x2 − x− 2
= lim

x→−1

(x− 1)(x+ 1)

(x− 2)(x+ 1)
= lim

x→−1

x− 1

x− 2
=

2

3
.

However, f(−1) is undefined. Therefore, there is a removable discontinuity at x = −1. I could make

the function continuous at x = −1 by defining f(−1) =
2

3
.

Example. Let

f(x) =

{

x2 + 3 if x > 2
4x if x ≤ 2

.

What kind of discontinuity does f(x) have at x = 2?

Note that
lim

x→2+
f(x) = lim

x→2+
(x2 + 3) = 7 and lim

x→2−
f(x) = lim

x→2−
4x = 8.

Thus, the left and right-hand limits aren’t equal. Therefore, there is a jump discontinuity at x = 2.

You can also get continuous functions by combining continuous functions in various ways.

Theorem. (a) If f and g are continuous at x = c, so is their sum f + g.

(b) If f and g are continuous at x = c, so is their difference f − g.

(c) If f and g are continuous at x = c, so is their product fg.

(d) If f and g are continuous at x = c, and if g(c) 6= 0, then the quotient
f

g
is continuous at x = c.

(e) If f is continuous at g(c) and if g is continuous at x = c, then the composite f ◦ g is continuous at x = c.

Proof. The proofs are fairly easy consequences of our theorems on limits. I’ll prove (c) by way of example.
Suppose f and g are continuous at x = c. This means that

lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c).

Multiplying the left sides and the right sides, I get

(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

= f(c)g(c).

By the rule for the limit of a product,

lim
x→c

f(x)g(x) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

Therefore,
lim
x→c

f(x)g(x) = f(c)g(c).

This is what it means for f(x)g(x) to be continuous at x = c.
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Here are some illustrations of these rules.
Since ex and x3 are continuous for all x, their sum ex + x3 and their product x3ex are continuous for

all x.

The quotient
ex

x3
is continuous for all x except x = 0 (where the quotient is undefined).

Composition is an important method for constructing continuous functions. For example, f(x) = sinx
is continuous for all x. The polynomial g(x) = x4− 7x2+x+1 is also continuous for all x. The composite is

f(g(x)) = sin(x4 − 7x2 + x+ 1).

It is continuous for all x.

Example. Let

f(x) =







1 if x < 0
x2 if 0 ≤ x < 1

sin
πx

2
if x ≥ 1

.

For what values of x is f continuous?

The function is continuous except possibly at the “break points” between the three pieces. I must check
the points x = 0 and x = 1 separately.

-2 -1 1 2

0.2

0.4

0.6

0.8

1

At x = 0,
lim

x→0−
f(x) = 1 but lim

x→0+
f(x) = 0.

Since the left- and right-hand limits do not agree,

lim
x→0

f(x) is undefined.

Hence, f is not continuous at x = 0.
At x = 1,

lim
x→1−

f(x) = lim
x→1−

x2 = 1, and lim
x→1+

f(x) = lim
x→1+

sin
πx

2
= 1.

The left- and right-hand limits agree, so

lim
x→1

f(x) = 1.

Now f(1) = 1, so
lim
x→1

f(x) = 1 = f(1).

Therefore, f is continuous at x = 1.
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Conclusion: f is continuous for all x except x = 0.

Example. Let

f(x) =
x2 − 2x− 3

x2 − 1
.

For what values of x is f continuous?

f is a quotient of two polynomials, and polynomials are continuous for all x. Hence, f(x) is continuous
at all points except those which make the bottom equal to 0.

Write f as

f(x) =
(x− 3)(x+ 1)

(x− 1)(x+ 1)
.

Hence, f is continuous for all x except x = 1 and x = −1. (Note that you can’t cancel the x+ 1-terms
before seeing where f is undefined.)

However, the discontinuity at x = −1 is a removable discontinuity:

lim
x→−1

f(x) = lim
x→−1

x2 − 2x− 3

x2 − 1
= lim

x→−1

(x− 3)(x+ 1)

(x− 1)(x+ 1)
= lim

x→−1

x− 3

x− 1
=

−4

−2
= 2.

f(−1) is undefined, but if I defined f(−1) = 2, then the new f would be continuous at x = −1.
On the other hand, the discontinuity at x = 1 is a vertical asymptote; no matter how I define f(1), the

function will still be discontinuous at x = 1.

Continuous functions possess the intermediate value property. Roughly put, it says that a if con-
tinuous function goes from one value to another, it doesn’t skip any values in between. This corresponds to
the geometric intuition that the graph of a continuous function doesn’t have any gaps, jumps, or holes. Here
is the precise statement.

Theorem. (Intermediate Value Theorem) Let f(x) be a continuous function on the interval a ≤ x ≤ b.
If m is a number between f(a) and f(b), then there is a number c in the interval a ≤ x ≤ b such that

f(c) = m.

The theorem is illustrated in the picture below:

a b

f(b)

f(a)

y = f(x)

f(c) = m

c

Try it for yourself: Pick any height m between f(a) and f(b). Move horizontally from your chosen
height to the graph, then downward from the graph till you hit the x-axis. The place where you hit the
x-axis is c. You’ll always be able to do this if f is continuous. The intuitive idea is that, being continuous,
f can’t skip any values in going from f(a) to f(b).
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A proof of the Intermediate Value Theorem uses some deep properties of the real numbers, so I won’t
give it here. At least you can see from the picture that the result is geometrically reasonable.

The theorem illustrates an important point: You can know something exists without being able to find

it.

If I take your car keys and throw them into a nearby corn field, you know that your keys are in the field
— but finding them is a different story!

The Intermediate Value Theorem says there is a number c such that f(c) = m. It doesn’t tell you how
to find it, though you can usually approximate c as closely as you want.

And by the way — there may be more than one number c which works. Even though the statement of
the theorem says “there is” (singular), mathematicians use these words to mean “there is at least

Example. Suppose f is a continuous function, f(4) = 11, and f(7) = 2. Prove that for some number x
between 4 and 7, f(x) + x2 = 42.

Since x2 and f(x) are continuous, f(x) + x2 is continuous. Plug in 4 and 7:

x f(x) + x2

4 f(4) + 42 = 27

7 f(7) + 72 = 51

42 is between 27 and 51, so I can apply the Intermediate Value Theorem to f(x)+x2. It says that there
is a number x between 4 and 7 such that f(x) + x2 = 42.

Example. Approximate a solution to the equation

x5 + 7x3 + 7x+ 1 = 0.

Here’s the graph:

-1 -0.5 0.5 1

-10

-5

5

10

15

It looks as though there’s a root between −0.5 and 0.
A clever person might say at this point: “Why not just look up the general formula for solving a 5-th

degree equation?” After all, there’s the general quadratic formula for quadratics . . . and there’s a general
cubic formula and a general quartic formula, though you’d probably have to look them up in a book of
tables.

Unfortunately, you’ll never find a general quintic formula in any book of tables. Nils Henrik Abel and
and Paolo Ruffini showed almost 150 years ago that there’s no general quintic, and Evariste Galois showed
a little later that you won’t have any luck with higher degree equations, either.

You can still approximate the root, and the Intermediate Value Theorem guarantees that there is one.
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f (being a polynomial) is surely continuous. In this situation, the IVT says that f can’t go from negative
to positive without passing through 0 somewhere in between.

Notice that
f(−0.5) ≈ −3.40625 and f(0) = 1.

Thus, I know there’s a root between −0.5 and 0.
I’ll approximate the root by bisection. At each step, I’ll know the root is caught between two numbers.

I’ll plug the midpoint into f . The root is now on one side or the other, and I just keep going.
This is exactly what common sense would lead you to do.
Here’s the computation:

x f(x) positive f(x) negative

−0.5 −3.40625

0.0 1

−0.25 −0.860352

−0.125 0.111298

−0.1875 −0.358874

−0.15625 −0.120546

At this point, the root c is caught between −0.125 (the last x which made f positive) and −0.15625 (the
last x which made f negative). These two numbers are 0.03125 apart. Hence, the midpoint x = −0.140625
is within 0.03125/2 = 0.015625 of the actual root. The estimate x = −0.140625 is therefore good to within
1 or 2 one-hundredths.
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