## Continuity

In many cases, you can compute $\lim _{x \rightarrow a} f(x)$ by plugging $a$ in for $x$ :

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

For example,

$$
\lim _{x \rightarrow 3}\left(2 x^{3}-5 x+1\right)=2 \cdot 3^{3}-5 \cdot 3+1=40
$$

This situation arises often enough that it has a name.
Definition. A function $f(x)$ is continuous at $a$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

This definition really comprises three things, each of which you need to check to show that $f$ is continuous at $a$ :

1. $f(a)$ is defined.
2. $\lim _{x \rightarrow a} f(x)$ is defined.
3. The two are equal: $\lim _{x \rightarrow a} f(x)=f(a)$.

What does this mean geometrically? Here are the three criteria above in pictorial language:

1. " $f(a)$ is defined" means there's a point on the graph at $a$.
2. " $\lim _{x \rightarrow a} f(x)$ is defined" means the graph approaches a single numerical value as you get close to $a$.
3. " $\lim _{x \rightarrow a} f(x)=f(a)$ " means that the value you're approaching is the value that $f$ actually takes on there are "no surprises".

The first criterion means that there can't be a hole or gap in the graph. This also rules out vertical asymptotes. Here are some pictures of these kinds of discontinuities:


The second criterion means that the graph can't "jump" at $a$. This is a jump discontinuity:


A jump discontinuity occurs when the left and right-hand limits aren't equal.
The third criterion means that the graph is "filled in" at $x=a$ as you'd expect. You don't get close to $a$ expecting one value and then find that $f(a)$ is something different, as you do below:
a removable discontinuity


This is called a removable discontinuity because you could make the function continuous by filling in the hole. In terms of limits, it means that $\lim _{x \rightarrow a} f(x)$ exists, but $\lim _{x \rightarrow a} f(x) \neq f(a)$.

Here are some classes of continuous functions:
(a) A polynomial $p(x)$ is continuous for all $x$.
(b) $|x|$ is continuous for all $x$.
(c) Trigonometric functions are continuous wherever they are defined.
(d) $e^{x}$ is continuous for all $x$ and $\ln x$ is continuous for $x>0$.
(e) $\sqrt[n]{x}$ is continuous for all $x$ for which it's defined.

The statement about polynomials, for example, follows from a property of limits. If $p(x)$ is a polynomial, I showed that

$$
\lim _{x \rightarrow c} p(x)=p(c)
$$

This is exactly what it means for $p(x)$ to be continuous at $c$.
For example, $f(x)=10 x^{100}-15 x+41$ is continuous for all $x$, since it's a polynomial.
The statement for $|x|$ is a fairly easy limit proof, but I'll omit it. And the statements for trig functions, $e^{x}$, and $\ln x$ depend on careful definitions of these functions; I'll discuss some of this later. As an example of the statement about trig functions, $\tan x$ is continuous for all $x$ except odd multiples of $\frac{\pi}{2}$. ( $\tan x$ is undefined at odd multiples of $\frac{\pi}{2}$.)

The limit proof for $\sqrt[n]{x}$ is not too hard, but once you have results on $e^{x}$ and $\ln x$, you can use the fact that

$$
\sqrt[n]{x}=x^{1 / n}=e^{(\ln x) / n}
$$

You have to ensure that the root you're taking is defined at the point. For example, $\sqrt{x}$ is continuous for $x \geq 0$. Remember that $\sqrt{x}$ is undefined for $x<0$.

Example. What kind of discontinuity does $f(x)=\frac{x^{2}-1}{x^{2}-x-2}$ have at $x=-1$ ?
Note that

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{2}-x-2}=\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{(x-2)(x+1)}=\lim _{x \rightarrow-1} \frac{x-1}{x-2}=\frac{2}{3}
$$

However, $f(-1)$ is undefined. Therefore, there is a removable discontinuity at $x=-1$. I could make the function continuous at $x=-1$ by defining $f(-1)=\frac{2}{3}$.

## Example. Let

$$
f(x)=\left\{\begin{array}{ll}
x^{2}+3 & \text { if } x>2 \\
4 x & \text { if } x \leq 2
\end{array} .\right.
$$

What kind of discontinuity does $f(x)$ have at $x=2$ ?
Note that

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}+3\right)=7 \quad \text { and } \quad \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} 4 x=8
$$

Thus, the left and right-hand limits aren't equal. Therefore, there is a jump discontinuity at $x=2 . \quad \square$

You can also get continuous functions by combining continuous functions in various ways.
Theorem. (a) If $f$ and $g$ are continuous at $x=c$, so is their sum $f+g$.
(b) If $f$ and $g$ are continuous at $x=c$, so is their difference $f-g$.
(c) If $f$ and $g$ are continuous at $x=c$, so is their product $f g$.
(d) If $f$ and $g$ are continuous at $x=c$, and if $g(c) \neq 0$, then the quotient $\frac{f}{g}$ is continuous at $x=c$.
(e) If $f$ is continuous at $g(c)$ and if $g$ is continuous at $x=c$, then the composite $f \circ g$ is continuous at $x=c$.

Proof. The proofs are fairly easy consequences of our theorems on limits. I'll prove (c) by way of example. Suppose $f$ and $g$ are continuous at $x=c$. This means that

$$
\lim _{x \rightarrow c} f(x)=f(c) \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=g(c) .
$$

Multiplying the left sides and the right sides, I get

$$
\left(\lim _{x \rightarrow c} f(x)\right)\left(\lim _{x \rightarrow c} g(x)\right)=f(c) g(c) .
$$

By the rule for the limit of a product,

$$
\lim _{x \rightarrow c} f(x) g(x)=\left(\lim _{x \rightarrow c} f(x)\right)\left(\lim _{x \rightarrow c} g(x)\right) .
$$

Therefore,

$$
\lim _{x \rightarrow c} f(x) g(x)=f(c) g(c)
$$

This is what it means for $f(x) g(x)$ to be continuous at $x=c$.

Here are some illustrations of these rules.
Since $e^{x}$ and $x^{3}$ are continuous for all $x$, their sum $e^{x}+x^{3}$ and their product $x^{3} e^{x}$ are continuous for all $x$.

The quotient $\frac{e^{x}}{x^{3}}$ is continuous for all $x$ except $x=0$ (where the quotient is undefined).
Composition is an important method for constructing continuous functions. For example, $f(x)=\sin x$ is continuous for all $x$. The polynomial $g(x)=x^{4}-7 x^{2}+x+1$ is also continuous for all $x$. The composite is

$$
f(g(x))=\sin \left(x^{4}-7 x^{2}+x+1\right) .
$$

It is continuous for all $x$.

Example. Let

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x<0 \\
x^{2} & \text { if } 0 \leq x<1 . \\
\sin \frac{\pi x}{2} & \text { if } x \geq 1
\end{array} .\right.
$$

For what values of $x$ is $f$ continuous?
The function is continuous except possibly at the "break points" between the three pieces. I must check the points $x=0$ and $x=1$ separately.


At $x=0$,

$$
\lim _{x \rightarrow 0-} f(x)=1 \text { but } \lim _{x \rightarrow 0+} f(x)=0 .
$$

Since the left- and right-hand limits do not agree,

$$
\lim _{x \rightarrow 0} f(x) \text { is undefined. }
$$

Hence, $f$ is not continuous at $x=0$.
At $x=1$,

$$
\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-} x^{2}=1, \quad \text { and } \quad \lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 1+} \sin \frac{\pi x}{2}=1 .
$$

The left- and right-hand limits agree, so

$$
\lim _{x \rightarrow 1} f(x)=1 .
$$

Now $f(1)=1$, so

$$
\lim _{x \rightarrow 1} f(x)=1=f(1) .
$$

Therefore, $f$ is continuous at $x=1$.

Conclusion: $f$ is continuous for all $x$ except $x=0 . \quad \square$

Example. Let

$$
f(x)=\frac{x^{2}-2 x-3}{x^{2}-1}
$$

For what values of $x$ is $f$ continuous?
$f$ is a quotient of two polynomials, and polynomials are continuous for all $x$. Hence, $f(x)$ is continuous at all points except those which make the bottom equal to 0 .

Write $f$ as

$$
f(x)=\frac{(x-3)(x+1)}{(x-1)(x+1)}
$$

Hence, $f$ is continuous for all $x$ except $x=1$ and $x=-1$. (Note that you can't cancel the $x+1$-terms before seeing where $f$ is undefined.)

However, the discontinuity at $x=-1$ is a removable discontinuity:

$$
\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x^{2}-1}=\lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{(x-1)(x+1)}=\lim _{x \rightarrow-1} \frac{x-3}{x-1}=\frac{-4}{-2}=2
$$

$f(-1)$ is undefined, but if I defined $f(-1)=2$, then the new $f$ would be continuous at $x=-1$.
On the other hand, the discontinuity at $x=1$ is a vertical asymptote; no matter how I define $f(1)$, the function will still be discontinuous at $x=1$.

Continuous functions possess the intermediate value property. Roughly put, it says that a if continuous function goes from one value to another, it doesn't skip any values in between. This corresponds to the geometric intuition that the graph of a continuous function doesn't have any gaps, jumps, or holes. Here is the precise statement.

Theorem. (Intermediate Value Theorem) Let $f(x)$ be a continuous function on the interval $a \leq x \leq b$. If $m$ is a number between $f(a)$ and $f(b)$, then there is a number $c$ in the interval $a \leq x \leq b$ such that

$$
f(c)=m
$$

The theorem is illustrated in the picture below:


Try it for yourself: Pick any height $m$ between $f(a)$ and $f(b)$. Move horizontally from your chosen height to the graph, then downward from the graph till you hit the $x$-axis. The place where you hit the $x$-axis is $c$. You'll always be able to do this if $f$ is continuous. The intuitive idea is that, being continuous, $f$ can't skip any values in going from $f(a)$ to $f(b)$.

A proof of the Intermediate Value Theorem uses some deep properties of the real numbers, so I won't give it here. At least you can see from the picture that the result is geometrically reasonable.

The theorem illustrates an important point: You can know something exists without being able to find $i t$.

If I take your car keys and throw them into a nearby corn field, you know that your keys are in the field - but finding them is a different story!

The Intermediate Value Theorem says there is a number $c$ such that $f(c)=m$. It doesn't tell you how to find it, though you can usually approximate $c$ as closely as you want.

And by the way - there may be more than one number $c$ which works. Even though the statement of the theorem says "there is" (singular), mathematicians use these words to mean "there is at least

Example. Suppose $f$ is a continuous function, $f(4)=11$, and $f(7)=2$. Prove that for some number $x$ between 4 and $7, f(x)+x^{2}=42$.

Since $x^{2}$ and $f(x)$ are continuous, $f(x)+x^{2}$ is continuous. Plug in 4 and 7 :

| $x$ | $f(x)+x^{2}$ |
| :---: | :---: |
| 4 | $f(4)+4^{2}=27$ |
| 7 | $f(7)+7^{2}=51$ |

42 is between 27 and 51 , so I can apply the Intermediate Value Theorem to $f(x)+x^{2}$. It says that there is a number $x$ between 4 and 7 such that $f(x)+x^{2}=42$. $\quad \square$

Example. Approximate a solution to the equation

$$
x^{5}+7 x^{3}+7 x+1=0 .
$$

Here's the graph:


It looks as though there's a root between -0.5 and 0 .
A clever person might say at this point: "Why not just look up the general formula for solving a 5 -th degree equation?" After all, there's the general quadratic formula for quadratics ... and there's a general cubic formula and a general quartic formula, though you'd probably have to look them up in a book of tables.

Unfortunately, you'll never find a general quintic formula in any book of tables. Nils Henrik Abel and and Paolo Ruffini showed almost 150 years ago that there's no general quintic, and Evariste Galois showed a little later that you won't have any luck with higher degree equations, either.

You can still approximate the root, and the Intermediate Value Theorem guarantees that there is one.
$f$ (being a polynomial) is surely continuous. In this situation, the IVT says that $f$ can't go from negative to positive without passing through 0 somewhere in between.

Notice that

$$
f(-0.5) \approx-3.40625 \text { and } f(0)=1
$$

Thus, I know there's a root between -0.5 and 0 .
I'll approximate the root by bisection. At each step, I'll know the root is caught between two numbers.
I'll plug the midpoint into $f$. The root is now on one side or the other, and I just keep going.
This is exactly what common sense would lead you to do.
Here's the computation:

| $x$ | $f(x)$ positive | $f(x)$ negative |
| :---: | :---: | :---: |
| -0.5 |  | -3.40625 |
| 0.0 | 1 |  |
| -0.25 |  | -0.860352 |
| -0.125 | 0.111298 |  |
| -0.1875 |  | -0.358874 |
| -0.15625 |  | -0.120546 |

At this point, the root $c$ is caught between -0.125 (the last $x$ which made $f$ positive) and -0.15625 (the last $x$ which made $f$ negative). These two numbers are 0.03125 apart. Hence, the midpoint $x=-0.140625$ is within $0.03125 / 2=0.015625$ of the actual root. The estimate $x=-0.140625$ is therefore good to within 1 or 2 one-hundredths. $\quad \square$

