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Growth and Decay Models

In certain situations, the rate at which a thing grows or decreases is proportional to the amount present.

When a substance undergoes radioactive decay, the release of decay particles precipitates additional
decay as the particles collide with the atoms of the substance. The larger the mass, the larger the number
of collisions per unit time.

Consider a collection of organisms growing without environmental constraints. The larger the popula-
tion, the larger the number of individuals involved in reproduction — and hence, the higher the reproductive
rate.

Let P be the amount of whatever is being measured — the mass of the radioactive substance or the
number of organisms, for example. Let t be the time elapsed since the measurements were started. Then

dP

dt
= kP.

If k > 0, then P increases with time (exponential growth); if k < 0, then P decreases with time
(exponential decay). k is called the growth constant (or decay constant).

I’ll solve for P in terms of t using separation of variables. First, formally move the P ’s to one side
and the t’s to the other:

dP

P
= k dt.

Integrate both sides and solve for P :

∫

dP

P
=

∫

k dt

ln |P | = kt+ C

eln |P | = ekt+C

|P | = eCekt

P = ±eCekt

Let P0 = ±eC . This gives
P = P0e

kt.

Note that P0 is the initial amount: Setting t = 0, P (0) = P0e
0 = P0.

Example. A population of roaches grows exponentially under Calvin’s couch. There are 20 initially and
140 after 2 days. How many are there after 14 days?

If P is the number of roaches after t days, then

P = 20ekt.

When t = 2, P = 140:
140 = 20e2k

7 = e2k

ln 7 = ln e2k = 2k

k =
ln 7

2
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Hence,
P = 20e(t ln 7)/2.

When t = 14,
P = 20e(14 ln 7)/2 ≈ 16470860 roaches.

Remark. We’ll often have expressions of the form “e(stuff)”, and this can be inconvenient to write if “stuff”
is complicated. You can use the exponential function notation to avoid this problem:

exp(stuff) = e(stuff).

For instance, in the last example,

exp

(

ln 7

2
t

)

= e(t ln 7)/2.

Example. A population of MU flu virus grows in such a way that it triples every 5 hours. If there were 100
initially, when will there be 1000000?

Let N be the number of the little rascals at time t. Then

N = 100ekt.

Since the amount triples in 5 hours, when t = 5, N = 300:

300 = 100e5k

3 = e5k

ln 3 = ln e5k = 5k

k =
ln 3

5

Hence,
N = 100e(t ln 3)/5.

Set N = 1000000:
1000000 = 100e(t ln 3)/5

10000 = e(t ln 3)/5

ln 10000 = ln e(t ln 3)/5

ln 10000 =
t ln 3

5

t =
5 ln 10000

ln 3
≈ 41.91807 hours

The half-life of a radioactive substance is the amount of time it takes for a given mass M to decay to
M

2
. Note that in radioactive decay, this time is independent of the amount M . That is, it takes the same

amount of time for 100 grams to decay to 50 grams as it takes for 1000000 grams to decay to 500000 grams.
Example. The half-life of radium is 1620 years. How long will it take 100 grams of radium to decay to 1
gram?
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Let M be the amount of radium left after t years. Then

M = 100ekt.

When t = 1620, M = 50:
50 = 100e1620k

1

2
= e1620k

ln
1

2
= ln e1620k = 1620k

k =
ln

1

2
1620

= −
ln 2

1620

Hence,
M = 100e−(t ln 2)/1620.

Set M = 1:
1 = 100e−(t ln 2)/1620

0.01 = e−(t ln 2)/1620

ln 0.01 = ln e−(t ln 2)/1620 = −
t ln 2

1620

t = −
1620 ln 0.01

ln 2
≈ 10763.04703 years

Example. A population of bacteria grows exponentially in such a way that there are 100 after 2 hours and
750 after 4 hours. How many were there initially?

Let P be the number of bacteria at time t. Then

P = P0e
kt.

There are 100 after 2 hours:
100 = P0e

2k.

There are 750 after 4 hours:
750 = P0e

4k.

I’ll solve for k first. Divide the second equation by the first:

750 = P0e
4k

100 = P0e
2k

750

100
=

P0e
4k

P0e2k

750

100
= e2k

ln 7.5 = ln e2k = 2k

k = 0.5 ln 7.5

Plug this into the first equation:

100 = P0e
2·0.5 ln 7.5 = P0e

ln 7.5 = 7.5P0, P0 =
100

7.5
≈ 13.33333.
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There were 13 bacteria initially (if I round to the nearest bacterium).

Newton’s Law of Cooling.

According toNewton’s law of cooling, the rate at which a body heats up or cools down is proportional
to the difference between its temperature and the temperature of its environment.

If T is the temperature of the object and Teis the temperature of the environment, then

dT

dt
= k(T − Te).

If k > 0, the object heats up (an oven). If k < 0, the object cools down (a refrigerator).
I’ll solve the equation using separation of variables. Formally move the T ’s to one side and the t’s to

the other, then integrate:

dT

T − Te
= k dt,

∫

dT

T − Te
=

∫

k dt, ln |T − Te| = kt+ C, eln |T−Te| = ekt+C ,

|T − Te| = eCekt, T − Te = ±eCekt.

Let C0 = ±eC :
T − Te = C0e

kt, T = Te + C0e
kt.

Let T0 be the initial temperature — that is, the temperature when t = 0. Then

T0 = Te + C0e
0 = Te + C0, C0 = T0 − Te.

Thus,
T = Te + (T0 − Te)e

kt.

Example. A 120◦ bagel is placed in a 70◦ room to cool. After 10 minutes, the bagel’s temperature is 90◦.
When will its temperature be 80◦?

In this case, Te = 70 and T0 = 120, so

T = 70 + 50ekt.

When t = 10, T = 90:

90 = 70 + 50e10k, 0.4 = e10k, ln 0.4 = ln e10k = 10k, k =
ln 0.4

10
.

Hence,
T = 70 + 50e(t ln 0.4)/10.

Set T = 80:

80 = 70 + 50e(t ln 0.4)/10, 0.2 = e(t ln 0.4)/10, ln 0.2 = ln e(t ln 0.4)/10 =
t ln 0.4

10
,

t =
10 ln 0.2

ln 0.4
≈ 17.56471 min.
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Example. A pair of shoes is placed in a 300◦ oven to bake. The temperature is 120◦ after 10 minutes and
152.7◦ after 20 minutes. What was the initial temperature of the shoes?

I set Te = 300 in T = Te + (T0 − Te)e
kt to obtain

T = 300 + (T0 − 300)ekt.

When t = 10, T = 120:

120 = 300 + (T0 − 300)e10k, −180 = (T0 − 300)e10k.

When t = 20, T = 152.7:

152.7 = 300 + (T0 − 300)e20k, −147.3 = (T0 − 300)e20k.

Divide −180 = (T0 − 300)e10k by −147.3 = (T0 − 300)e20k and solve for k:

180

147.3
= e−10k, ln

180

147.3
= ln e−10k = −10k, k = −

1

10
ln

180

147.3
.

Plug this back into −180 = (T0 − 300)e10k and solve for T0:

−180 = (T0 − 300)e[10·(−1/10) ln(180/147.3)], −180 = (T0 − 300)e− ln(180/147.3),

−180 = (T0 − 300)eln(147.3/180), −180 = (T0 − 300) ·
147.3

180
,

−
32400

147.3
= T0 − 300, T0 = 300−

32400

147.3
≈ 80.04073◦.

In the real world, things do not grow exponentially without limit. It’s natural to try to find models
which are more realistic.

Logistic Growth.

The logistic growth model is described by the differential equation

dP

dt
= kP (b− P ).

P is the quantity undergoing growth — for example, an animal population — and t is time. k is the
growth constant, and the constant b is called the carrying capacity; the reason for the name will become
evident shortly.

Notice that if P is less than b and is small compared to b, then b − P ≈ b. The equation becomes
dP

dt
≈ kbP , which is exponential growth. Notice that the derivative

dP

dt
is positive, so P increases with time.

If P is greater than b, then b − P is negative, so the derivative
dP

dt
is negative. This means that P

decreases with time.
It’s possible to solve the logistic equation using separation of variables, though it will require a little

trick (called a partial fraction expansion).
Separate the variables:

∫

dP

P (b− P )
=

∫

k dt.

Now
1

P (b− P )
=

1

b

(

1

b− P
+

1

P

)

.
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(You can verify that this is correct by adding the fractions on the right over a common denominator.)
Therefore, I have

1

b

∫
(

1

b− P
+

1

P

)

dP =

∫

k dt

1

b
(ln |P | − ln |b− P |) = kt+ C

ln

∣

∣

∣

∣

P

b− P

∣

∣

∣

∣

= bkt+ bC

exp ln

∣

∣

∣

∣

P

b− P

∣

∣

∣

∣

= exp(bkt+ bC)

∣

∣

∣

∣

P

b− P

∣

∣

∣

∣

= ebCebkt

I can replace the | · |’s with a ± on the right, then set C0 = ±ebC . This yields

P

b− P
= C0e

bkt.

Now some routine algebra gives

P =
bC0e

bkt

1 + C0ebkt
.

Divide the top and bottom by C0e
bkt, and set C1 =

1

C0
:

P =
b

C1e−bkt + 1
.

Suppose the initial population is P0. This means P = P0 when t = 0:

P0 =
b

C1 + 1
so C1 =

b

P0
− 1.

Thus, the equation is

P =
b

(

b

P0
− 1

)

e−bkt + 1

.

For example, consider the case where k = 1 and b = 3. I’ve graphed the equation for P with P0 = 0.2,
1, 2, 3, 4, and 5:
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P0 = 0.2 shows initial exponential growth. As the population increases, growth levels off, approaching
P = 3 asymptotically.

P0 = 1 and P0 = 2 are already large enough that the population spends most of its time levelling off,
rather than growing exponentially.

An initial population P0 = 3 remains constant.
P0 = 4 and P0 = 5 yield populations that shrink, again approaching P = 3 as t → ∞.
You can see why b is called the carrying capacity. Think of it as the maximum number of individuals

that the environment can support. If the initial population is smaller than b, the population grows upward
toward the carrying capacity. If the initial population is larger than P , individuals die and the population
decreases toward the carrying capacity.
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