Inverse Trig Functions

If you restrict $f(x)=\sin x$ to the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$, the function increases:

This implies that the function is one-to-one, and hence it has an inverse. The inverse is called the inverse sine or arcsine function, and is denoted $\arcsin x$ or $\sin ^{-1}(x)$. Note that in the second case $\sin ^{-1}(x)$ does not mean " $\frac{1}{\sin x} "!$

Note: "Arcsine" (and $\arcsin x$) are older terms, and there is similar terminology for the other inverse trig functions (so "arctangent" and $\arctan x$ for the inverse tangent function, and so on). I'll use the inverse function terminology instead.

In word, $y=\sin ^{-1} x$ is the angle whose sine is x. Another way of saying this is:

$$
y=\sin ^{-1} x \quad \text { is the same as } \quad \sin y=x .
$$

The fact that \sin and $\sin ^{-1}$ are inverse functions can be expressed by the following equations:

$$
\begin{gathered}
\sin \sin ^{-1} a=a \quad \text { for } \quad-1 \leq a \leq 1 \\
\sin ^{-1} \sin b=b \quad \text { for } \quad-\frac{\pi}{2} \leq b \leq \frac{\pi}{2}
\end{gathered}
$$

Since the restricted sin takes angles in the range $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and produces numbers in the range $-1 \leq y \leq 1, \sin ^{-1}$ takes numbers in the range $-1 \leq y \leq 1$ and produces angles in the range $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

$y=\sin ^{-1} x$ -1	
	$-\pi / 2$

Example. Compute $\sin ^{-1} \frac{1}{2}$ and $\sin ^{-1}(-1)$.

$$
\begin{aligned}
& \sin ^{-1} \frac{1}{2}=\frac{\pi}{6}, \quad \text { since } \quad \sin \frac{\pi}{6}=\frac{1}{2} . \\
& \sin ^{-1}(-1)=-\frac{\pi}{2}, \quad \text { since } \quad \sin \left(-\frac{\pi}{2}\right)=-1 .
\end{aligned}
$$

Sine and arcsine are inverses, so they undo one another - but you have to be careful!

$$
\sin \left(\arcsin \frac{2}{5}\right)=\frac{2}{5}, \quad \text { but } \quad \arcsin (\sin 2 \pi)=0, \quad \text { not } \quad 2 \pi
$$

$\sin ^{-1}$ (stuff) can't be 2π, because $\sin ^{-1}$ always returns an angle in the range $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

Example. Find $\tan \sin ^{-1} \frac{5}{13}$.
First, let $\theta=\sin ^{-1} \frac{5}{13}$. This means that $\sin \theta=\frac{5}{13}$. Now $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$, so I get the following picture:

12
I got the adjacent side using Pythagoras: $\sqrt{13^{2}-5^{2}}=12$.
Using the triangle, I have

$$
\tan \sin ^{-1} \frac{5}{13}=\tan \theta=\frac{5}{12} .
$$

You can find a derivative formula for $\sin ^{-1}$ using implicit differentiation. Let $y=\sin ^{-1} x$. This is equivalent to $x=\sin y$. Differentiate implicitly:

$$
\begin{aligned}
x & =\sin y \\
1 & =(\cos y) y^{\prime} \\
y^{\prime} & =\frac{1}{\cos y}
\end{aligned}
$$

I'd like to express the result in terms of x. Here's the right triangle that says $x=\sin y$:

I found the other leg using Pythagoras. You can see that $\cos y=\sqrt{1-x^{2}}$. Hence, $y^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$. That is,

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}
$$

Every derivative formula gives rise to a corresponding antiderivative formula:

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C
$$

Before I do some calculus examples, I want to mention some of the other inverse trig functions. I'll discuss the inverse cosine, inverse tangent, and inverse secant functions.
(a) You get the inverse cosine by inverting $\cos x$, restricted to $0 \leq x \leq \pi$.

(b) You get the inverse tangent by inverting $\tan x$, restricted to $-\frac{\pi}{2}<x<\frac{\pi}{2}$.

(c) You get the inverse secant by inverting $\sec x$, restricted to $0<x<\frac{\pi}{2}$ together with $\frac{\pi}{2}<x<\pi$.

As with \sin and $\sin ^{-1}$, the domains and ranges of these functions and their inverses are "swapped":

Function	Domain	Range
$\sin ^{-1}$	$-1 \leq x \leq 1$	$-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
$\cos ^{-1}$	$-1 \leq x \leq 1$	$0 \leq x \leq \pi$
$\tan ^{-1}$	$-\infty<x<\infty$	$-\frac{\pi}{2}<x<\frac{\pi}{2}$
$\sec ^{-1}$	$x \leq-1, x \geq 1$	$0 \leq x<\frac{\pi}{2}, \frac{\pi}{2}<x \leq \pi$

Example. Compute $\tan ^{-1} 1$ and $\cos ^{-1}\left(-\frac{1}{2}\right)$.

$$
\begin{gathered}
\tan ^{-1} 1=\frac{\pi}{4}, \quad \text { since } \quad \tan \frac{\pi}{4}=1 \\
\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}, \quad \text { since } \quad \cos \frac{2 \pi}{3}=-\frac{1}{2}
\end{gathered}
$$

You can derive the derivative formulas for the other inverse trig functions using implicit differentiation, just as I did for the inverse sine function.

$$
\begin{aligned}
\frac{d}{d x} \cos ^{-1} x & =-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1} x & =\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1} x & =\frac{1}{|x| \sqrt{x^{2}-1}}
\end{aligned}
$$

For example, I'll derive the formula for $\frac{d}{d x} \sec ^{-1} x$.

The derivation starts out like the derivation for $\frac{d}{d x} \sin ^{-1} x$. Let $y=\sec ^{-1} x, \operatorname{sosec} y=x$. Differentiating implicitly, I get

$$
\begin{aligned}
(\sec y \tan y) y^{\prime} & =1 \\
y^{\prime} & =\frac{1}{\sec y \tan y}
\end{aligned}
$$

There are two cases, depending on whether $x \geq 1$ or $x \leq-1$.

Suppose $x \geq 1$. Then $y=\sec ^{-1} x$ is in the interval $0 \leq y<\frac{\pi}{2}$, as illustrated in the first diagram above. You can see from the picture that

$$
\sec y=x \quad \text { and } \quad \tan y=\sqrt{x^{2}-1}
$$

Therefore,

$$
y^{\prime}=\frac{1}{\sec y \tan y}=\frac{1}{x \sqrt{x^{2}-1}}
$$

$x \geq 1$, so x is positive, and $x=|x|$. Therefore,

$$
y^{\prime}=\frac{1}{x \sqrt{x^{2}-1}}=\frac{1}{|x| \sqrt{x^{2}-1}}
$$

Now suppose that $x \leq-1$. Then $y=\sec ^{-1} x$ is in the interval $\frac{\pi}{2}<y \leq \pi$, as illustrated in the second diagram above. Since x is negative, the hypotenuse must be $-x$, since it must be positive and since $\sec y=\frac{\text { (hypotenuse) }}{\text { (adjacent) }}$ must equal x. In this case,

$$
\sec y=x \quad \text { and } \quad \tan y=-\sqrt{x^{2}-1}
$$

Therefore,

$$
y^{\prime}=\frac{1}{\sec y \tan y}=\frac{1}{-x \sqrt{x^{2}-1}}
$$

$x \leq-1$, so x is negative, and $-x=|x|$. Therefore,

$$
y^{\prime}=\frac{1}{-x \sqrt{x^{2}-1}}=\frac{1}{|x| \sqrt{x^{2}-1}} .
$$

This proves that $y^{\prime}=\frac{1}{|x| \sqrt{x^{2}-1}}$ in all cases.

Example. Compute:
(a) $\frac{d}{d x}\left(\sin ^{-1} \sqrt{x}+\sqrt{\sin ^{-1} x}\right)$.
(b) $\frac{d}{d x} \frac{1}{\tan ^{-1} x}$.
(c) $\frac{d}{d x} \sec ^{-1}\left(e^{x}\right)$.
(a)

$$
\frac{d}{d x}\left(\sin ^{-1} \sqrt{x}+\sqrt{\sin ^{-1} x}\right)=\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}}+\frac{1}{2}\left(\sin ^{-1} x\right)^{-1 / 2} \cdot \frac{1}{\sqrt{1-x^{2}}}
$$

(b)

$$
\frac{d}{d x} \frac{1}{\tan ^{-1} x}=\left(-\frac{1}{\left(\tan ^{-1} x\right)^{2}}\right)\left(\frac{1}{1+x^{2}}\right)
$$

(c)

$$
\frac{d}{d x} \sec ^{-1}\left(e^{x}\right)=\frac{e^{x}}{e^{x} \sqrt{e^{2 x}-1}}=\frac{1}{\sqrt{e^{2 x}-1}}
$$

I don't need absolute values in the last example, because e^{x} is always positive.

Example. Prove the identity

$$
\begin{gathered}
\tan ^{-1} w+\tan ^{-1} \frac{1}{w}=\frac{\pi}{2} \\
\frac{d}{d x} \tan ^{-1} \frac{1}{w}=\frac{-\frac{1}{w^{2}}}{1+\frac{1}{w^{2}}}=-\frac{1}{1+w^{2}}
\end{gathered}
$$

Hence,

$$
\frac{d}{d x}\left(\tan ^{-1} w+\tan ^{-1} \frac{1}{w}\right)=0
$$

A function with zero derivative is constant, so

$$
\tan ^{-1} w+\tan ^{-1} \frac{1}{w}=C, \quad \text { a constant. }
$$

But when $w=1$,

$$
C=\tan ^{-1} w+\tan ^{-1} \frac{1}{w}=\tan ^{-1} 1+\tan ^{-1} 1=\frac{\pi}{2}
$$

Therefore,

$$
\tan ^{-1} w+\tan ^{-1} \frac{1}{w}=\frac{\pi}{2}
$$

Here are the integration formulas for some of the inverse trig functions. I'm giving extended versions of the formulas - with " a^{2} " replacing the " 1 " that you'd get if you just reversed the derivative formulas - in order to save you a little time in doing problems.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C
\end{aligned}
$$

$$
\int \frac{1}{|x| \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1} \frac{x}{a}+C
$$

For instance, here's how to derive the extended $\sin ^{-1}$ integral formula from the formula $\int \frac{1}{\sqrt{1-x^{2}}} d x=$ $\sin ^{-1} x+C$ using substitution:

$$
\begin{gathered}
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\frac{1}{a} \int \frac{1}{\sqrt{1-\left(\frac{x}{a}\right)^{2}}} d x=\frac{1}{a} \int \frac{1}{\sqrt{1-u^{2}}} \cdot a d u=\int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1} u+C=\sin ^{-1} \frac{x}{a}+C . \\
\\
{\left[u=\frac{x}{a}, \quad d u=\frac{d x}{a}, \quad d x=a d u\right]}
\end{gathered}
$$

Example. Compute $\int \frac{d x}{4+x^{2}}$ and $\int \frac{1}{\sqrt{3-x^{2}}} d x$.
Using the $\tan ^{-1}$ formula with $a=2$,

$$
\int \frac{d x}{4+x^{2}}=\frac{1}{2} \tan ^{-1} \frac{x}{2}+C
$$

Using the $\sin ^{-1}$ formula with $a=\sqrt{3}$,

$$
\int \frac{1}{\sqrt{3-x^{2}}} d x=\sin ^{-1} \frac{x}{\sqrt{3}}+C
$$

Example. Compute $\int \frac{d x}{1+4 x^{2}}$.

$$
\begin{gathered}
\int \frac{d x}{1+4 x^{2}}=\int \frac{d x}{1+(2 x)^{2}}=\int \frac{1}{1+u^{2}} \cdot \frac{d u}{2}=\frac{1}{2} \tan ^{-1} u+C=\frac{1}{2} \tan ^{-1}(2 x)+C . \\
{\left[u=2 x, \quad d u=2 d x, \quad d x=\frac{d u}{2}\right]}
\end{gathered}
$$

Example. Compute $\int \frac{x^{4} d x}{1+x^{10}}$.

$$
\begin{aligned}
& \int \frac{x^{4} d x}{1+x^{10}}= \int \frac{x^{4} d x}{1+\left(x^{5}\right)^{2}}=\int \frac{x^{4}}{1+u^{2}} \cdot \frac{d u}{5 x^{4}}=\frac{1}{5} \int \frac{d u}{1+u^{2}}= \\
& {\left[u=x^{5}, \quad d u=5 x^{4} d x, \quad d x=\frac{d u}{5 x^{4}}\right] } \\
& \frac{1}{5} \tan ^{-1} u+C=\frac{1}{5} \tan ^{-1}\left(x^{5}\right)+C
\end{aligned}
$$

Example. Compute $\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$.

$$
\begin{gathered}
\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x=\int \frac{e^{x}}{\sqrt{1-u^{2}}} \cdot \frac{d u}{e^{x}}=\int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1} u+C=\sin ^{-1} e^{x}+C . \\
{\left[u=e^{x}, \quad d u=e^{x} d x, \quad d x=\frac{d u}{e^{x}}\right]}
\end{gathered}
$$

Example. Compute $\int \frac{(\sec x)^{2} d x}{\sqrt{1-(\tan x)^{2}}}$.

$$
\begin{gathered}
\int \frac{(\sec x)^{2} d x}{\sqrt{1-(\tan x)^{2}}}=\int \frac{(\sec x)^{2}}{\sqrt{1-u^{2}}} \cdot \frac{d u}{(\sec x)^{2}}=\int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1} u+C=\sin ^{-1} \tan x+C . \\
{\left[u=\tan x, \quad d u=(\sec x)^{2} d x, \quad d x=\frac{d u}{(\sec x)^{2}}\right]}
\end{gathered}
$$

