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Inverse Trig Functions

If you restrict f(x) = sinx to the interval −π

2
≤ x ≤ π

2
, the function increases:

y = sin x

-  /2p

/2p

This implies that the function is one-to-one, and hence it has an inverse. The inverse is called the
inverse sine or arcsine function, and is denoted arcsinx or sin−1(x). Note that in the second case

sin−1(x) does not mean “
1

sinx
”!

Note: “Arcsine” (and arcsinx) are older terms, and there is similar terminology for the other inverse
trig functions (so “arctangent” and arctanx for the inverse tangent function, and so on). I’ll use the inverse
function terminology instead.

In word, y = sin−1 x is the angle whose sine is x. Another way of saying this is:

y = sin−1 x is the same as sin y = x.

The fact that sin and sin−1 are inverse functions can be expressed by the following equations:

sin sin−1 a = a for − 1 ≤ a ≤ 1,

sin−1 sin b = b for − π

2
≤ b ≤ π

2
.

Since the restricted sin takes angles in the range −π

2
≤ x ≤ π

2
and produces numbers in the range

−1 ≤ y ≤ 1, sin−1 takes numbers in the range −1 ≤ y ≤ 1 and produces angles in the range −π

2
≤ x ≤ π

2
.
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/2p
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y = sin   x-1
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Example. Compute sin−1
1

2
and sin−1(−1).

sin−1
1

2
=

π

6
, since sin

π

6
=

1

2
.

sin−1(−1) = −π

2
, since sin

(

−π

2

)

= −1.

Sine and arcsine are inverses, so they undo one another — but you have to be careful!

sin

(

arcsin
2

5

)

=
2

5
, but arcsin (sin 2π) = 0, not 2π.

sin−1(stuff) can’t be 2π, because sin−1 always returns an angle in the range −π

2
≤ x ≤ π

2
.

Example. Find tan sin−1
5

13
.

First, let θ = sin−1
5

13
. This means that sin θ =

5

13
. Now sin θ =

opposite

hypotenuse
, so I get the following

picture:

5

q

12

13

I got the adjacent side using Pythagoras:
√
132 − 52 = 12.

Using the triangle, I have

tan sin−1
5

13
= tan θ =

5

12
.

You can find a derivative formula for sin−1 using implicit differentiation. Let y = sin−1 x. This is
equivalent to x = sin y. Differentiate implicitly:

x = sin y

1 = (cos y)y′

y′ =
1

cos y

I’d like to express the result in terms of x. Here’s the right triangle that says x = sin y:

x
1

1 - x2

y
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I found the other leg using Pythagoras. You can see that cos y =
√
1− x2. Hence, y′ =

1√
1− x2

. That

is,

d

dx
sin−1 x =

1√
1− x2

.

Every derivative formula gives rise to a corresponding antiderivative formula:

∫

1√
1− x2

dx = sin−1 x+ C.

Before I do some calculus examples, I want to mention some of the other inverse trig functions. I’ll
discuss the inverse cosine, inverse tangent, and inverse secant functions.

(a) You get the inverse cosine by inverting cosx, restricted to 0 ≤ x ≤ π.

y = arccos x

p

-1 1

(b) You get the inverse tangent by inverting tanx, restricted to −π

2
< x <

π

2
.

y = arctan x

/2p

-  /2p
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(c) You get the inverse secant by inverting secx, restricted to 0 < x <
π

2
together with

π

2
< x < π.

/2p

-1 1

y = arcsec x

As with sin and sin−1, the domains and ranges of these functions and their inverses are “swapped”:

Function Domain Range

sin−1 −1 ≤ x ≤ 1 −π

2
≤ x ≤ π

2

cos−1 −1 ≤ x ≤ 1 0 ≤ x ≤ π

tan−1 −∞ < x < ∞ −π

2
< x <

π

2

sec−1 x ≤ −1, x ≥ 1 0 ≤ x <
π

2
,
π

2
< x ≤ π

Example. Compute tan−1 1 and cos−1

(

−1

2

)

.

tan−1 1 =
π

4
, since tan

π

4
= 1.

cos−1

(

−1

2

)

=
2π

3
, since cos

2π

3
= −1

2
.

You can derive the derivative formulas for the other inverse trig functions using implicit differentiation,
just as I did for the inverse sine function.

d

dx
cos−1 x = − 1√

1− x2

d

dx
tan−1 x =

1

1 + x2

d

dx
sec−1 x =

1

|x|
√
x2 − 1

For example, I’ll derive the formula for
d

dx
sec−1 x.
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The derivation starts out like the derivation for
d

dx
sin−1 x. Let y = sec−1 x, so sec y = x. Differentiating

implicitly, I get
(sec y tan y)y′ = 1

y′ =
1

sec y tan y

There are two cases, depending on whether x ≥ 1 or x ≤ −1.

y

x

1

x  - 12 x  - 12
-x

-1

y

x   1³ x   -1³

Suppose x ≥ 1. Then y = sec−1 x is in the interval 0 ≤ y <
π

2
, as illustrated in the first diagram above.

You can see from the picture that

sec y = x and tan y =
√

x2 − 1.

Therefore,

y′ =
1

sec y tan y
=

1

x
√
x2 − 1

.

x ≥ 1, so x is positive, and x = |x|. Therefore,

y′ =
1

x
√
x2 − 1

=
1

|x|
√
x2 − 1

.

Now suppose that x ≤ −1. Then y = sec−1 x is in the interval
π

2
< y ≤ π, as illustrated in the

second diagram above. Since x is negative, the hypotenuse must be −x, since it must be positive and since

sec y =
(hypotenuse)

(adjacent)
must equal x. In this case,

sec y = x and tan y = −
√

x2 − 1.

Therefore,

y′ =
1

sec y tan y
=

1

−x
√
x2 − 1

.

x ≤ −1, so x is negative, and −x = |x|. Therefore,

y′ =
1

−x
√
x2 − 1

=
1

|x|
√
x2 − 1

.

This proves that y′ =
1

|x|
√
x2 − 1

in all cases.

Example. Compute:
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(a)
d

dx

(

sin−1
√
x+

√

sin−1 x
)

.

(b)
d

dx

1

tan−1 x
.

(c)
d

dx
sec−1(ex).

(a)
d

dx

(

sin−1
√
x+

√

sin−1 x
)

=
1√
1− x

· 1

2
√
x
+

1

2

(

sin−1 x
)−1/2 · 1√

1− x2
.

(b)
d

dx

1

tan−1 x
=

(

− 1

(tan−1 x)2

)(

1

1 + x2

)

.

(c)
d

dx
sec−1(ex) =

ex

ex
√
e2x − 1

=
1√

e2x − 1
.

I don’t need absolute values in the last example, because ex is always positive.

Example. Prove the identity

tan−1 w + tan−1
1

w
=

π

2
.

d

dx
tan−1

1

w
=

− 1

w2

1 +
1

w2

= − 1

1 + w2
.

Hence,
d

dx

(

tan−1 w + tan−1
1

w

)

= 0.

A function with zero derivative is constant, so

tan−1 w + tan−1
1

w
= C, a constant.

But when w = 1,

C = tan−1 w + tan−1
1

w
= tan−1 1 + tan−1 1 =

π

2
.

Therefore,

tan−1 w + tan−1
1

w
=

π

2
.

Here are the integration formulas for some of the inverse trig functions. I’m giving extended versions of
the formulas — with “a2” replacing the “1” that you’d get if you just reversed the derivative formulas — in
order to save you a little time in doing problems.

∫

1√
a2 − x2

dx = sin−1
x

a
+ C

∫

1

a2 + x2
dx =

1

a
tan−1

x

a
+ C
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∫

1

|x|
√
x2 − a2

dx =
1

a
sec−1

x

a
+ C

For instance, here’s how to derive the extended sin−1 integral formula from the formula

∫

1√
1− x2

dx =

sin−1 x+ C using substitution:

∫

1√
a2 − x2

dx =
1

a

∫

1
√

1−
(x

a

)2
dx =

1

a

∫

1√
1− u2

· a du =

∫

du√
1− u2

= sin−1 u+ C = sin−1
x

a
+ C.

[

u =
x

a
, du =

dx

a
, dx = a du

]

Example. Compute

∫

dx

4 + x2
and

∫

1√
3− x2

dx.

Using the tan−1 formula with a = 2,

∫

dx

4 + x2
=

1

2
tan−1

x

2
+ C.

Using the sin−1 formula with a =
√
3,

∫

1√
3− x2

dx = sin−1
x√
3
+ C.

Example. Compute

∫

dx

1 + 4x2
.

∫

dx

1 + 4x2
=

∫

dx

1 + (2x)2
=

∫

1

1 + u2
· du
2

=
1

2
tan−1 u+ C =

1

2
tan−1(2x) + C.

[

u = 2x, du = 2 dx, dx =
du

2

]

Example. Compute

∫

x4 dx

1 + x10
.

∫

x4 dx

1 + x10
=

∫

x4 dx

1 + (x5)2
=

∫

x4

1 + u2
· du

5x4
=

1

5

∫

du

1 + u2
=

[

u = x5, du = 5x4 dx, dx =
du

5x4

]

1

5
tan−1 u+ C =

1

5
tan−1(x5) + C.

Example. Compute

∫

ex√
1− e2x

dx.
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∫

ex√
1− e2x

dx =

∫

ex√
1− u2

· du
ex

=

∫

du√
1− u2

= sin−1 u+ C = sin−1 ex + C.

[

u = ex, du = ex dx, dx =
du

ex

]

Example. Compute

∫

(secx)2 dx
√

1− (tanx)2
.

∫

(secx)2 dx
√

1− (tanx)2
=

∫

(secx)2√
1− u2

· du

(secx)2
=

∫

du√
1− u2

= sin−1 u+ C = sin−1 tanx+ C.

[

u = tanx, du = (secx)2 dx, dx =
du

(secx)2

]
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