Inverse Trig Functions

If you restrict $f(x) = \sin x$ to the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, the function *increases*:

This implies that the function is *one-to-one*, and hence it has an inverse. The inverse is called the **inverse sine** or **arcsine function**, and is denoted $\arcsin x$ or $\sin^{-1}(x)$. Note that in the second case $\sin^{-1}(x)$ does not mean " $\frac{1}{\sin x}$ "!

Note: "Arcsine" (and $\arcsin x$) are older terms, and there is similar terminology for the other inverse trig functions (so "arctangent" and $\arctan x$ for the inverse tangent function, and so on). I'll use the inverse function terminology instead.

In word, $y = \sin^{-1} x$ is the angle whose sine is x. Another way of saying this is:

$$y = \sin^{-1} x$$
 is the same as $\sin y = x$.

The fact that sin and \sin^{-1} are inverse functions can be expressed by the following equations:

$$\sin \sin^{-1} a = a \quad \text{for} \quad -1 \le a \le 1,$$
$$\sin^{-1} \sin b = b \quad \text{for} \quad -\frac{\pi}{2} \le b \le \frac{\pi}{2}.$$

Since the restricted sin takes angles in the range $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ and produces numbers in the range $-1 \le y \le 1$, \sin^{-1} takes numbers in the range $-1 \le y \le 1$ and produces angles in the range $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

Example. Compute $\sin^{-1}\frac{1}{2}$ and $\sin^{-1}(-1)$.

S

$$\sin^{-1}\frac{1}{2} = \frac{\pi}{6}, \text{ since } \sin\frac{\pi}{6} = \frac{1}{2}.$$

 $\sin^{-1}(-1) = -\frac{\pi}{2}, \text{ since } \sin\left(-\frac{\pi}{2}\right) = -1$

Sine and arcsine are inverses, so they undo one another — but you have to be careful!

$$\sin\left(\arcsin\frac{2}{5}\right) = \frac{2}{5}$$
, but $\arcsin\left(\sin 2\pi\right) = 0$, not 2π .

 $\sin^{-1}(\text{stuff})$ can't be 2π , because \sin^{-1} always returns an angle in the range $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. \Box

Example. Find $\tan \sin^{-1} \frac{5}{13}$.

First, let $\theta = \sin^{-1} \frac{5}{13}$. This means that $\sin \theta = \frac{5}{13}$. Now $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$, so I get the following picture:

I got the adjacent side using Pythagoras: $\sqrt{13^2 - 5^2} = 12$. Using the triangle, I have

$$\tan \sin^{-1} \frac{5}{13} = \tan \theta = \frac{5}{12}.$$

You can find a derivative formula for \sin^{-1} using implicit differentiation. Let $y = \sin^{-1} x$. This is equivalent to $x = \sin y$. Differentiate implicitly:

$$x = \sin y$$

$$1 = (\cos y)y'$$

$$y' = \frac{1}{\cos y}$$

I'd like to express the result in terms of x. Here's the right triangle that says $x = \sin y$:

I found the other leg using Pythagoras. You can see that $\cos y = \sqrt{1 - x^2}$. Hence, $y' = \frac{1}{\sqrt{1 - x^2}}$. That is,

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

Every derivative formula gives rise to a corresponding antiderivative formula:

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C.$$

Before I do some calculus examples, I want to mention some of the other inverse trig functions. I'll discuss the **inverse cosine**, **inverse tangent**, and **inverse secant** functions.

(a) You get the inverse cosine by inverting $\cos x$, restricted to $0 \le x \le \pi$.

(b) You get the inverse tangent by inverting $\tan x$, restricted to $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

(c) You get the inverse secant by inverting sec x, restricted to $0 < x < \frac{\pi}{2}$ together with $\frac{\pi}{2} < x < \pi$.

As with sin and \sin^{-1} , the domains and ranges of these functions and their inverses are "swapped":

Function	Domain	Range
\sin^{-1}	$-1 \le x \le 1$	$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
\cos^{-1}	$-1 \le x \le 1$	$0 \le x \le \pi$
\tan^{-1}	$-\infty < x < \infty$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$
sec^{-1}	$x \le -1, x \ge 1$	$0 \le x < \frac{\pi}{2}, \frac{\pi}{2} < x \le \pi$

Example. Compute
$$\tan^{-1} 1$$
 and $\cos^{-1} \left(-\frac{1}{2}\right)$.
 $\tan^{-1} 1 = \frac{\pi}{4}$, since $\tan \frac{\pi}{4} = 1$.
 $\cos^{-1} \left(-\frac{1}{2}\right) = \frac{2\pi}{3}$, since $\cos \frac{2\pi}{3} = -\frac{1}{2}$.

You can derive the derivative formulas for the other inverse trig functions using implicit differentiation, just as I did for the inverse sine function.

$$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$
$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$$
$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2-1}}$$

For example, I'll derive the formula for $\frac{d}{dx} \sec^{-1} x$.

The derivation starts out like the derivation for $\frac{d}{dx} \sin^{-1} x$. Let $y = \sec^{-1} x$, so $\sec y = x$. Differentiating implicitly, I get

$$(\sec y \tan y)y' = 1$$

 $y' = \frac{1}{\sec y \tan y}$

There are two cases, depending on whether $x \ge 1$ or $x \le -1$.

Suppose $x \ge 1$. Then $y = \sec^{-1} x$ is in the interval $0 \le y < \frac{\pi}{2}$, as illustrated in the first diagram above. You can see from the picture that

$$\sec y = x$$
 and $\tan y = \sqrt{x^2 - 1}$

Therefore,

$$y' = \frac{1}{\sec y \tan y} = \frac{1}{x\sqrt{x^2 - 1}}$$

 $x \ge 1$, so x is positive, and x = |x|. Therefore,

$$y' = \frac{1}{x\sqrt{x^2 - 1}} = \frac{1}{|x|\sqrt{x^2 - 1}}.$$

Now suppose that $x \leq -1$. Then $y = \sec^{-1} x$ is in the interval $\frac{\pi}{2} < y \leq \pi$, as illustrated in the second diagram above. Since x is negative, the hypotenuse must be -x, since it must be positive and since $\sec y = \frac{\text{(hypotenuse)}}{(\text{adjacent})}$ must equal x. In this case,

$$\sec y = x$$
 and $\tan y = -\sqrt{x^2 - 1}$.

Therefore,

$$y' = \frac{1}{\sec y \tan y} = \frac{1}{-x\sqrt{x^2 - 1}}.$$

 $x \leq -1$, so x is negative, and -x = |x|. Therefore,

$$y' = \frac{1}{-x\sqrt{x^2 - 1}} = \frac{1}{|x|\sqrt{x^2 - 1}}.$$

This proves that $y' = \frac{1}{|x|\sqrt{x^2 - 1}}$ in all cases.

Example. Compute:

(a)
$$\frac{d}{dx} \left(\sin^{-1} \sqrt{x} + \sqrt{\sin^{-1} x} \right).$$

(b) $\frac{d}{dx} \frac{1}{\tan^{-1} x}.$
(c) $\frac{d}{dx} \sec^{-1}(e^x).$
(a) $\frac{d}{dx} \left(\sin^{-1} \sqrt{x} + \sqrt{\sin^{-1} x} \right) = \frac{1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}} + \frac{1}{2} \left(\sin^{-1} x \right)^{-1/2} \cdot \frac{1}{\sqrt{1-x^2}}.$ (b) $\frac{d}{dx} \frac{1}{\tan^{-1} x} = \left(-\frac{1}{(\tan^{-1} x)^2} \right) \left(\frac{1}{1+x^2} \right).$ (c) $\frac{d}{dx} \sec^{-1}(e^x) = \frac{e^x}{e^x \sqrt{e^{2x} - 1}} = \frac{1}{\sqrt{e^{2x} - 1}}.$ (c)

I don't need absolute values in the last example, because e^x is always positive.

Example. Prove the identity

$$\tan^{-1} w + \tan^{-1} \frac{1}{w} = \frac{\pi}{2}.$$

$$\frac{d}{dx}\tan^{-1}\frac{1}{w} = \frac{-\frac{1}{w^2}}{1+\frac{1}{w^2}} = -\frac{1}{1+w^2}.$$

Hence,

$$\frac{d}{dx}\left(\tan^{-1}w + \tan^{-1}\frac{1}{w}\right) = 0.$$

A function with zero derivative is constant, so

$$\tan^{-1} w + \tan^{-1} \frac{1}{w} = C, \quad \text{a constant.}$$

But when w = 1,

$$C = \tan^{-1} w + \tan^{-1} \frac{1}{w} = \tan^{-1} 1 + \tan^{-1} 1 = \frac{\pi}{2}$$

Therefore,

$$\tan^{-1} w + \tan^{-1} \frac{1}{w} = \frac{\pi}{2}. \quad \Box$$

Here are the integration formulas for some of the inverse trig functions. I'm giving extended versions of the formulas — with " a^2 " replacing the "1" that you'd get if you just reversed the derivative formulas — in order to save you a little time in doing problems.

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a} + C$$
$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{|x|\sqrt{x^2 - a^2}} \, dx = \frac{1}{a} \sec^{-1} \frac{x}{a} + C$$

For instance, here's how to derive the extended \sin^{-1} integral formula from the formula $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}x + C$ using substitution:

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \frac{1}{a} \int \frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} \, dx = \frac{1}{a} \int \frac{1}{\sqrt{1 - u^2}} \cdot a \, du = \int \frac{du}{\sqrt{1 - u^2}} = \sin^{-1} u + C = \sin^{-1} \frac{x}{a} + C.$$

$$\begin{bmatrix} u = \frac{x}{a}, & du = \frac{dx}{a}, & dx = a \, du \end{bmatrix}$$
Example. Compute $\int \frac{dx}{4 + x^2}$ and $\int \frac{1}{\sqrt{3 - x^2}} \, dx.$

Using the \tan^{-1} formula with a = 2,

$$\int \frac{dx}{4+x^2} = \frac{1}{2} \tan^{-1} \frac{x}{2} + C.$$

Using the \sin^{-1} formula with $a = \sqrt{3}$,

$$\int \frac{1}{\sqrt{3-x^2}} \, dx = \sin^{-1} \frac{x}{\sqrt{3}} + C. \quad \Box$$

Example. Compute $\int \frac{dx}{1+4x^2}$. $\int \frac{dx}{1+4x^2} = \int \frac{dx}{1+(2x)^2} = \int \frac{1}{1+u^2} \cdot \frac{du}{2} = \frac{1}{2} \tan^{-1} u + C = \frac{1}{2} \tan^{-1}(2x) + C.$ $\left[u = 2x, \quad du = 2 \, dx, \quad dx = \frac{du}{2} \right] \quad \Box$

Example. Compute $\int \frac{x^4 dx}{1+x^{10}}$. $\int \frac{x^4 dx}{1+x^{10}} = \int \frac{x^4 dx}{1+(x^5)^2} = \int \frac{x^4}{1+u^2} \cdot \frac{du}{5x^4} = \frac{1}{5} \int \frac{du}{1+u^2} = \begin{bmatrix} u = x^5, & du = 5x^4 dx, & dx = \frac{du}{5x^4} \end{bmatrix}$ $\frac{1}{5} \tan^{-1} u + C = \frac{1}{5} \tan^{-1}(x^5) + C. \quad \Box$

Example. Compute $\int \frac{e^x}{\sqrt{1-e^{2x}}} dx$.

$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} \, dx = \int \frac{e^x}{\sqrt{1 - u^2}} \cdot \frac{du}{e^x} = \int \frac{du}{\sqrt{1 - u^2}} = \sin^{-1} u + C = \sin^{-1} e^x + C.$$
$$\begin{bmatrix} u = e^x, & du = e^x \, dx, & dx = \frac{du}{e^x} \end{bmatrix} \quad \Box$$

Example. Compute $\int \frac{(\sec x)^2 dx}{\sqrt{1 - (\tan x)^2}}$.

$$\int \frac{(\sec x)^2 \, dx}{\sqrt{1 - (\tan x)^2}} = \int \frac{(\sec x)^2}{\sqrt{1 - u^2}} \cdot \frac{du}{(\sec x)^2} = \int \frac{du}{\sqrt{1 - u^2}} = \sin^{-1} u + C = \sin^{-1} \tan x + C$$
$$\left[u = \tan x, \quad du = (\sec x)^2 \, dx, \quad dx = \frac{du}{(\sec x)^2} \right] \quad \Box$$