12-7-2018
Inverse Trig Functions
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If you restrict f(x) = sinz to the interval —3 <z< 5 the function increases:

y = sinx

-t/2
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This implies that the function is one-to-one, and hence it has an inverse. The inverse is called the

inverse sine or arcsine function, and is denoted arcsinz or sin~'(x). Note that in the second case

sin~!(z) does not mean “ "

s x

Note: “Arcsine” (and arcsinz) are older terms, and there is similar terminology for the other inverse

trig functions (so “arctangent” and arctan x for the inverse tangent function, and so on). I’ll use the inverse
function terminology instead.

In word, y = sin~! z is the angle whose sine is x. Another way of saying this is:

y=sin"'z isthe same as siny = z.

The fact that sin and sin™! are inverse functions can be expressed by the following equations:

sinsinla=a for —1<a< 1,

sin"'sinb=b for —=<b<
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Since the restricted sin takes angles in the range —3 <z < 5 and produces numbers in the range

—1 <y <1,sin"! takes numbers in the range —1 < y < 1 and produces angles in the range T <z< g

n/2

y= sin'wx

-n/2




1
Example. Compute sin~' = and sin™*(—1).

. . 1
, since sin— = —.
6 2

since sin (77> = —1.
2

Sine and arcsine are inverses, so they undo one another — but you have to be careful!

. .2 2 o
sin | arcsin— | = —, but arcsin(sin27) =0, not 2.

5 5’
sin~!(stuff) can’t be 27, because sin~! always returns an angle in the range fg <z< g D
. . 1 9
Example. Find tansin
. . .1 90 . . ) . opposite .
First, let 6 = sin™" —. This means that sinf = —. Now sinf = ——— , so I get the following
13 13 hypotenuse
picture:
13
5
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I got the adjacent side using Pythagoras: /132 — 52 = 12.
Using the triangle, I have
5
tansin™! — =tanf = —. 0O

You can find a derivative formula for sin™! using implicit differentiation. Let y = sin~'z. This is
equivalent to x = siny. Differentiate implicitly:

T =siny

1= (cosy)y’

! — 1
cos Y

I’d like to express the result in terms of x. Here’s the right triangle that says x = siny:
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I found the other leg using Pythagoras. You can see that cosy = v/1 — 22. Hence, ¥/ = ———. That
V1—z2

is,

N 1
—sin"x =

dx V1I—2?

Every derivative formula gives rise to a corresponding antiderivative formula:

1
—— dr=sintz+C.
/\/1—562

Before I do some calculus examples, I want to mention some of the other inverse trig functions. I'll
discuss the inverse cosine, inverse tangent, and inverse secant functions.

(a) You get the inverse cosine by inverting cos z, restricted to 0 < x < .

y = Qrccos x

T T
(b) You get the inverse tangent by inverting tan z, restricted to —3 <z < 7"

/2

y = arctan x

-t/2
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(¢) You get the inverse secant by inverting sec x, restricted to 0 < < 5 together with — < o < 7.

y = Qrcsec x

/2
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As with sin and sin~!, the domains and ranges of these functions and their inverses are “swapped”:

Function Domain Range
T T
sin~? -1<z<1 ——<zr< -
2 2
cos™ 1 -1<x<1 0<z<m
. T s
tan —o00 < x <00 —— << =
2 2
sec™! r<-1l,z>1 0§x<§,§<x§7r

tan™t1 = 37 since tan% = 1.
cos™? ! 2 since cos 2m 1 0
—= | = n —_— = ——.
2 3’ 3 2

You can derive the derivative formulas for the other inverse trig functions using implicit differentiation,
just as I did for the inverse sine function.

1
-1
— oS L= —————
d NS )
1
—tan lp= —
dx an o 1+ 22
1
sec 1z

d
For example, I'll derive the formula for . sec” ! .
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The derivation starts out like the derivation for e sin"!z. Let y = sec™!
x

x, so secy = x. Differentiating
implicitly, I get

(secytany)y’ =1
1

secy tany

/

y:

There are two cases, depending on whether x > 1 or x < —1.

X 5 5 X
xe-1 Xé-1 Ly
y N
1 -1
X =1 X=<-1

1

Suppose > 1. Then y = sec™ " z is in the interval 0 < y < g, as illustrated in the first diagram above.

You can see from the picture that

secy=x and tany=+\/x2—1.

Therefore,

/

_ 1 _ 1
 secytany  av22 — 1

x > 1, so x is positive, and x = |x|. Therefore,

1 1
r_ _ .
Mo |z|vaz? —1

1

Now suppose that x+ < —1. Then y = sec™" z is in the interval T < y < 7, as illustrated in the

second diagram above. Since x is negative, the hypotenuse must be —x, since it must be positive and since

hypot
secy = (ypéﬂ must equal x. In this case,
(adjacent)
secy=z and tany=—\/x2—1.
Therefore,
1 1

!

secy tany - N

x < —1, so x is negative, and —x = |z|. Therefore,

1 1
r_ _ '
Y —xva?—1  |x|vVa? -1

This proves that 3’ = in all cases.

1
|x|vVa? —1

Example. Compute:



(a) % (sin_1 Vz + Vsin™! x)

d 1
drtan—lz’

(b)

(c) % sec ™1 (e”).

d 1 1 1 - 1
7 (Sin_1 Vz + Vsin™! x) = 5= t3 (sin™' z) vz,
x

d 1 1 1
drtan™'z  \ (tan~'z)2) \1+22)"

—sec™(e?) = < = 1 D
erVe =1 Ve -1

I don’t need absolute values in the last example, because e* is always positive.

Example. Prove the identity

tan~! w + tan™! = = g
1
) 1
— tan~! = = we o _ .
1 2
d Wy — I+w
Hence,
d 1
(tan_l w+ tan™! > =0.
dr w

A function with zero derivative is constant, so

1
tan " lw 4 tan~t — = C, a constant.
w

But when w =1,

1 T
C=tan 'w+tan ' = =tan"'1+tan"t1 = 5
w

Therefore,

1
tan ' w + tan"! = = z. O
w 2

Here are the integration formulas for some of the inverse trig functions. I'm giving extended versions of
the formulas — with “a?” replacing the “1” that you’d get if you just reversed the derivative formulas — in
order to save you a little time in doing problems.

dr = sin~? z +C
a

|

1 1
/ﬁd:c:ftan*1§+0
a® +x a a



For instance, here’s how to derive the extended sin ™! integral formula from the formula

5=
=
1— a2

sin~! z + C using substitution:
1 1 1 1 1 du T
- dz== | ————dz== | ——— adu= | ——= =sin'u+C=sin ' = +C.
/\/ag—xQ a/ /1 (m)Q a/\/l—u2 /\/1—u2 a
a

{u—x, du = x’ dx:adu}
a

dx 1

E le. t —

xample. Compute / .

Using the tan~! formula with a = 2,

Using the sin™! formula with a = v/3,

1 T
——  dr=sin'—=+C. O
/\/3—3:2 V3

dzx

Example. Compute / T3 12

dx dx 1 du 1 1 1 _
/1+4x2 /1+(2x)2 /1+u2 y — gt utC=gtan (2n) +

[uz?x, du = 2dz, dx:d;} ]

x*dx
1+210°

/x4d:r/:c4d:c /x4 ﬂil/dui
L+20 ) 1452 ) 1+u2 524 5) 1+u2

{uzmg’, du=5z*dx, dx= 5x4}

Example. Compute /

1
tan tu+C = gtan_l(m5) +C. O

Example. Compute /
P P ﬁ —



=sin 'u+C =sin"'e® + C.

e

[uze”’, du = €” dz, dmzd—u] O

eac

(secx)? dx

V1= (tanz)?’

Example. Compute

(secx)? dx (sec m)2

v/1— (tanz)? \/1—u2 (secx)? /\/1—u2

=sin'u+C =sin"'tanz + C.

du
(secx)

[u =tanz, du= (secz)’dr, dr= 5
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