The Limit Definition

Having discussed how you can compute limits, I want to examine the definition of a limit in more detail.
You might wonder why it is necessary to be careful. Suppose you're trying to compute $\lim _{x \rightarrow 0} \frac{1-\cos \left(x^{8}\right)}{x^{16}}$. You might think of drawing a graph; many graphing calculators, for instance, produce a graph like the one below:

It looks as though the graph is dropping down to 0 near $x=0$. From this, you might guess that the limit is 0 . In fact,

$$
\lim _{x \rightarrow 0} \frac{1-\cos \left(x^{8}\right)}{x^{16}}=\frac{1}{2}
$$

It's possible to justify this algebraically once you know a little about limits of trig functions.
Pictures can be helpful; so can experimenting with numbers. In many cases, pictures and numerical experiments are inconclusive or even misleading. In these cases, how can you determine whether a proposed answer is correct or not?

Because the limit definition is a bit abstract, I'll start off with an informal definition.
Informal Definition. If $f(x)$ can be made arbitrarily close to L for all x 's sufficiently close to c, then

$$
\lim _{x \rightarrow c} f(x)=L
$$

This statement is like a guarantee. Think of making parts in a factory. Your customers won't buy your parts unless they meet certain specifications. So you might guarantee that your parts will be within 0.01 of the customer's specification.

Likewise, to say that $\lim _{x \rightarrow c} f(x)=L$ you must be able to guarantee that you can make $f(x)$ fall within (say) 0.01 of L. But you have to do more: You have to be able to make $f(x)$ fall within any positive tolerance of $L-0.0001,0.0000004$, and so on, no matter how small.

Another way to think of this is as meeting a challenge; for example:
Challenge: "I challenge you to make $f(x)$ stay within 0.0005 of L."
Your response: "I guarantee that every x within 0.003 of c (except perhaps c itself) will give an $f(x)$ that is within 0.0005 of L."

To prove that $\lim _{x \rightarrow c} f(x)=L$, you must be able to meet the challenge no matter what positive number is used in place of 0.0005.

By the way, notice that $x=c$ is excluded in my guarantee. The reason is that in computing $\lim _{x \rightarrow c} f(x)$, we're concerned with what happens as x approaches c, not what $f(c)$ is.

Before I give some examples, here's an important fact about absolute value:

$$
|A-B|=(\text { the distance from } \mathrm{A} \text { to } \mathrm{B}) .
$$

We want absolute values, which are always nonnegative, because a distance shouldn't be negative.
Also, notice that

$$
|A-B|=|B-A| .
$$

That makes sense, because the distance from A to B should be the same as the distance from B to A. For instance,

$$
|8-2|=|6|=6 \quad \text { and } \quad|2-8|=|-6|=6 .
$$

Example. By plugging in $x=4$, it appears that

$$
\lim _{x \rightarrow 4}(3 x-5)=7 .
$$

How close should x be to 4 to guarantee that $3 x-5$ is within 0.01 of 7 ?
Let's work backwards: I want $3 x-5$ to be within 0.01 of 7 . This means

$$
\begin{aligned}
|(3 x-5)-7| & <0.01 \\
|3 x-12| & <0.01 \\
3|x-4| & <0.01 \\
|x-4| & <\frac{0.01}{3}
\end{aligned}
$$

The last inequality says that the distance from x to 4 should be less than $\frac{0.01}{3}$. So if x lies within $\frac{0.01}{3}$ of 4 , I can guarantee that $3 x-5$ will be within 0.01 of 7 .

A formal proof would just reverse the steps above:

$$
\begin{aligned}
|x-4| & <\frac{0.01}{3} \\
3|x-4| & <0.01 \\
|3 x-12| & <0.01 \\
|(3 x-5)-7| & <0.01
\end{aligned}
$$

Can you see that if I'm challenged to make $3 x-5$ lie within 0.00001 of 7 , I should make x lie within $\frac{0.00001}{3}$ of 4 ? Just replace 0.01 with 0.00001 in the discussion above.

And similarly, I can make $3 x-5$ lie within any tolerance FOO of 7 by making x lie within $\frac{\text { FOO }}{3}$ of 4 .
This shows that I can meet any challenge, since I can just take the challenge tolerance and plug it in for FOO. This proves that

$$
\lim _{x \rightarrow 4}(3 x-5)=7 .
$$

Example. The graph of a function $y=f(x)$ is shown below.

It appears that $\lim _{x \rightarrow 4} f(x)=3$.
A (grey) horizontal strip of width 0.5 is drawn around $y=3$. Draw a picture to show a range of x-values around 4 for which the corresponding $f(x)$-values lie in the horizontal strip.

Use it to estimate the width of a symmetric vertical strip around 4 representing x-values whose corresponding $f(x)$-values lie in the horizontal strip.

Suppose I'm challenged to make $f(x)$ fall within 0.5 of 3 . That is, I want my y-values to fall within the grey strip in the picture.

On the right side of 4 , the graph stays within the grey strip as far as 4.25 ; on the left side of 4 , the graph stays within the grey strip as far as 3 .

If I want a strip that's symmetric about 4, I use the closer of the two values, which is 4.25 . Now 4.25 is 0.25 units from 4 , so my answer is: If x is within 0.25 of 4 , then $f(x)$ will be within 0.5 of 3 . \square

If I can meet such a challenge with any positive number in place of 0.5 , then I will have proved that $\lim _{x \rightarrow 4} f(x)=3$.

Example. (Disproving a limit) Consider the function $y=f(x)$ whose graph is show below.

Suppose that Calvin Butterball thinks that $\lim _{x \rightarrow 3} f(x)=4$. Use the limit definition to disprove it.
To disprove Calvin's claim, I'll make a challenge that Calvin can't meet.
I challenge Calvin to make $f(x)$ fall within 0.5 of 4 . This means that he must find a range of x 's around 3 so that the corresponding part of the graph lies within the grey strip shown below:

You can see that there's no way to do this. (Note: He's not allowed to use $x=3$ alone. Remember that what the function does at $x=3$ has no bearing on the value of the limit.)

Since this challenge can't be met, $\lim _{x \rightarrow 3} f(x) \neq 4$. In fact, $\lim _{x \rightarrow 3} f(x)$ is undefined. \square

Example. Suppose

$$
f(x)= \begin{cases}5-2 x & \text { if } x<1 \\ 4 x-1 & \text { if } x \geq 1\end{cases}
$$

It appears that $\lim _{x \rightarrow 1} f(x)=3$. How close should x be to 1 in order to guarantee that $f(x)$ will be within 0.0008 of 3 ?

As in an earlier example, I'll work backwards.
From the left side, I'd need

$$
\begin{aligned}
|(5-2 x)-3| & <0.0008 \\
|2-2 x| & <0.0008 \\
|2 x-2| & <0.0008 \\
|x-1| & <0.0004
\end{aligned}
$$

The last inequality says that x should be within 0.0004 of 1 .

From the right side, I'd need

$$
\begin{aligned}
|(4 x-1)-3| & <0.0008 \\
|4 x-4| & <0.0008 \\
|x-1| & <0.0002
\end{aligned}
$$

This means that x should be within 0.0002 of 1 .
To satisfy the two requirements at the same time, I'll use the smaller of the two numbers. So I'll require that x should be within 0.0002 of 1 , which means

$$
|x-1|<0.0002
$$

Here is the "real" proof, which I get by writing the scratch work in the reverse order.
Suppose $|x-1|<0.0002$. If $x \geq 1$, I have

$$
\begin{aligned}
|x-1| & <0.0002 \\
|4 x-4| & <0.0008 \\
|(4 x-1)-3| & <0.0008 \\
|f(x)-3| & <0.0008
\end{aligned}
$$

Now

$$
|x-1|<0.0002<0.0004
$$

So if $x<1$, I have

$$
\begin{aligned}
|x-1| & <0.0004 \\
|2 x-2| & <0.0008 \\
|2-2 x| & <0.0008 \\
|(5-2 x)-3| & <0.0008 \\
|f(x)-3| & <0.0008
\end{aligned}
$$

(From the second to the third line, I used the fact that $|A-B|=|B-A|$.)
Thus, if x is within 0.0002 of 1 , then $f(x)$ will be within 0.0008 of 3 .

I'm almost ready to give the formal definition of a limit, but I need to mention something first as a matter of honesty. It's a technical issue, and it won't arise in the majority of problems and examples (so you can ignore it without much harm if you wish).

A technical point. In discussing $\lim _{x \rightarrow c} f(x)$, I'll usually assume that f is defined on an open interval containing c. That is, there are numbers a and b such that $a<c<b$ and f is defined (at least) on $a<x<b$.

For one-sided limit (which I'll discuss later), $f(x)$ should be defined on an open interval with c as an endpoint.

To understand why you want to do this, consider the function

$$
f(x)=\left\{\begin{array}{ll}
\ln x & \text { if } x>0 \\
42 & \text { if } x=-10
\end{array} .\right.
$$

(So, for instance, f is simply not defined at $x=-1$, or at $x=-57$.)
In the definition of $\lim _{x \rightarrow-10} f(x)$, the "if" part of the definition would hold vacuously (for small open intervals around -10), because there would be no values of x near -10 for which f was defined. Thus, the limit L could be anything!

The condition on the domain of f is made to avoid silly cases like this one.
In order to avoid cluttering the statements of the definition or of proofs of limit properties, I usually won't state this assumption about the domains of functions in limits explicitly.

Now I'll give the formal definition of a limit, and show how to use it to do $\epsilon-\delta$ proofs.
Definition. $\lim _{x \rightarrow c} f(x)=L$ means:
For every $\epsilon>0$, there is a δ, such that for all x in the domain of f, if $\delta>|x-c|>0$, then $\epsilon>|f(x)-L|$.
" ϵ " is the Greek letter epsilon. It is the "challenge number", the tolerance or maximum error you have to meet. δ is the Greek letter delta. It is the "response number", the setting on x which meets the challenge. The Greek letters are used in this definition for traditional reaons; there is nothing otherwise special about them.

Let's see how proofs of limits work using the definition.

Example. Prove that $\lim _{x \rightarrow 4}(7 x-3)=25$.
In this problem, 4 corresponds to $c, 7 x-3$ corresponds to $f(x)$, and 25 corresponds to L in the limit definition.

I have to show that, given any $\epsilon>0$, there is a δ, such that

$$
\text { if } \delta>|x-4|>0, \quad \text { then } \quad \epsilon>|(7 x-3)-25|
$$

Notice that I'm given ϵ, but I'm not told its value (which was the case in earlier examples). All I can assume is that it's some positive number. I have to come up with a δ that meets the condition above. To do this, I work backwards as I did in earlier examples. This is "scratchwork", and doesn't count as the "real" proof, which will come afterward.

Scratchwork. I want $\epsilon>|(7 x-3)-25|$. I'll work backwards from this and try to get something that looks like "(whatever) $>|x-4|$ ". Then I'll set $\delta=$ (whatever) and try to do the real proof.

$$
\begin{aligned}
& \epsilon>|(7 x-3)-25| \\
& \epsilon>|7 x-28| \\
& \epsilon>7|x-4| \\
& \frac{\epsilon}{7}>|x-4|
\end{aligned}
$$

Okay - I'll try $\delta=\frac{\epsilon}{7}$.

The real proof. Let $\delta=\frac{\epsilon}{7}$. I must show that

$$
\text { if } \delta>|x-4|>0, \quad \text { then } \quad \epsilon>|(7 x-3)-25| .
$$

When you are proving an "if-then" statement, you get to assume the "if" part, and you prove the "then" part. So assume

$$
\frac{\epsilon}{7}=\delta>|x-4|
$$

The rest of the proof is easy: I just reverse the steps I did on scratchwork:

$$
\begin{aligned}
& \frac{\epsilon}{7}>|x-4| \\
& \epsilon>7|x-4| \\
& \epsilon>|7 x-28| \\
& \epsilon>|(7 x-3)-25|
\end{aligned}
$$

Therefore, by the limit definition,

$$
\lim _{x \rightarrow 4}(7 x-3)=25
$$

A similar approach works for limits of the form $\lim _{x \rightarrow c}(a x+b)$. Here is a harder example.

Example. Prove that $\lim _{x \rightarrow 3}\left(x^{2}+5 x\right)=24$.
In this case, 3 corresponds to $c, x^{2}+5 x$ corresponds to $f(x)$, and 24 corresponds to L.

Scratchwork. I want $\epsilon>\left|\left(x^{2}+5 x\right)-24\right|$. I'll work backwards from this and try to get something that looks like "(whatever) $>|x-3|$ ". Then I'll set $\delta=$ (whatever) and try to do the real proof.

$$
\begin{aligned}
& \epsilon>\left|\left(x^{2}+5 x\right)-24\right| \\
& \epsilon>\left|x^{2}+5 x-24\right| \\
& \epsilon>|(x+8)(x-3)| \\
& \epsilon>|x+8||x-3|
\end{aligned}
$$

I can't just divide both sides by $|x+8|$ (like I divided by 7 in the last example:

$$
\frac{\epsilon}{|x+8|}>|x-3| .
$$

The problem is that I can't set $\delta=\frac{\epsilon}{|x+8|}$, because I would need to know x in order to know δ - but δ is supposed to determine the range of x 's.

Instead, I need to make a "preliminary" setting of δ. I'll provisionally set $\delta=1$. Then

Remember that you have complete control over δ. Setting δ to 1 is like adjusting a setting on an instrument, where you make an initial rough setting, then fine-tune it. We'll see how this works out when we write the "real proof".

Adding 8 to each term, I get

$$
\begin{aligned}
2 & <x<4 \\
10 & <x+8<12 \\
|x+8| & <12
\end{aligned}
$$

Remember that I want the inequality $\epsilon>|x+8||x-3|$.
If I could get $\epsilon>12|x-3|$, then I'd have

$$
\begin{aligned}
12 & >|x+8| \\
12|x-3| & >|x+8||x-3| \\
\epsilon>12|x-3| & >|x+8||x-3|
\end{aligned}
$$

But

$$
\begin{aligned}
\epsilon & >12|x-3| \\
\frac{\epsilon}{12} & >|x-3|
\end{aligned}
$$

It looks like I should try $\delta=\frac{\epsilon}{12} \ldots$ but then, I remember I needed to set $\delta=1$ earlier. How can I get both of these things to happen? The idea is to make δ the smaller of the two numbers 1 and $\frac{\epsilon}{12}$ —in symbols,

$$
\delta=\min \left(1, \frac{\epsilon}{12}\right) .
$$

("min" stands for "minimum".) This means that

$$
1 \geq \delta \quad \text { and } \quad \frac{\epsilon}{12} \geq \delta .
$$

The real proof. Let $\delta=\min \left(1, \frac{\epsilon}{12}\right)$. I must show that:

$$
\text { if } \quad \delta>|x-3|>0, \quad \text { then } \quad \epsilon>\left|\left(x^{2}+5 x\right)-24\right| .
$$

So I may assume $\delta>|x-3|>0$, and I have to prove $\epsilon>\left|\left(x^{2}+5 x\right)-24\right|$.
As I noted in the scratchwork, I know that

$$
1 \geq \delta \quad \text { and } \quad \frac{\epsilon}{12} \geq \delta
$$

Take $1 \geq \delta$ first. Then

$$
\begin{gathered}
1 \geq \delta>|x-3| \\
4>x>2 \\
12>x+8>10 \\
12>|x+8|
\end{gathered}
$$

Next, I'll use $\frac{\epsilon}{12} \geq \delta$. Multiply this inequality and the inequality $12>|x+8|$ to get

$$
\begin{aligned}
\epsilon=12 \cdot \frac{\epsilon}{12} & >|x+8||x-3| \\
\epsilon & >\left|x^{2}+5 x-24\right| \\
\epsilon & >\left|\left(x^{2}+5 x\right)-24\right|
\end{aligned}
$$

Therefore, I've proved that $\lim _{x \rightarrow 3}\left(x^{2}+5 x\right)=24$.

