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The Limit Definition

Having discussed how you can compute limits, I want to examine the definition of a limit in more detail.

You might wonder why it is necessary to be careful. Suppose you’re trying to compute lim
x→0

1− cos(x8)

x16
.

You might think of drawing a graph; many graphing calculators, for instance, produce a graph like the one
below:
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It looks as though the graph is dropping down to 0 near x = 0. From this, you might guess that the
limit is 0. In fact,

lim
x→0

1− cos(x8)

x16
=

1

2
.

It’s possible to justify this algebraically once you know a little about limits of trig functions.
Pictures can be helpful; so can experimenting with numbers. In many cases, pictures and numerical

experiments are inconclusive or even misleading. In these cases, how can you determine whether a proposed
answer is correct or not?

Because the limit definition is a bit abstract, I’ll start off with an informal definition.

Informal Definition. If f(x) can be made arbitrarily close to L for all x’s sufficiently close to c, then

lim
x→c

f(x) = L.

This statement is like a guarantee. Think of making parts in a factory. Your customers won’t buy your
parts unless they meet certain specifications. So you might guarantee that your parts will be within 0.01 of
the customer’s specification.

Likewise, to say that lim
x→c

f(x) = L you must be able to guarantee that you can make f(x) fall within

(say) 0.01 of L. But you have to do more: You have to be able to make f(x) fall within any positive tolerance

of L — 0.0001, 0.0000004, and so on, no matter how small.
Another way to think of this is as meeting a challenge; for example:

Challenge: “I challenge you to make f(x) stay within 0.0005 of L.”

Your response: “I guarantee that every x within 0.003 of c (except perhaps c itself) will give an f(x)
that is within 0.0005 of L.”

To prove that lim
x→c

f(x) = L, you must be able to meet the challenge no matter what positive number is

used in place of 0.0005.
By the way, notice that x = c is excluded in my guarantee. The reason is that in computing lim

x→c

f(x),

we’re concerned with what happens as x approaches c, not what f(c) is.

Before I give some examples, here’s an important fact about absolute value:

|A−B| = (the distance from A to B).
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We want absolute values, which are always nonnegative, because a distance shouldn’t be negative.

Also, notice that

|A−B| = |B −A|.

That makes sense, because the distance from A to B should be the same as the distance from B to A.
For instance,

|8− 2| = |6| = 6 and |2− 8| = | − 6| = 6.

Example. By plugging in x = 4, it appears that

lim
x→4

(3x− 5) = 7.

How close should x be to 4 to guarantee that 3x− 5 is within 0.01 of 7?

Let’s work backwards: I want 3x− 5 to be within 0.01 of 7. This means

|(3x− 5)− 7| < 0.01

|3x− 12| < 0.01

3|x− 4| < 0.01

|x− 4| <
0.01

3

The last inequality says that the distance from x to 4 should be less than
0.01

3
. So if x lies within

0.01

3
of 4, I can guarantee that 3x− 5 will be within 0.01 of 7.

A formal proof would just reverse the steps above:

|x− 4| <
0.01

3

3|x− 4| < 0.01

|3x− 12| < 0.01

|(3x− 5)− 7| < 0.01

Can you see that if I’m challenged to make 3x − 5 lie within 0.00001 of 7, I should make x lie within
0.00001

3
of 4? Just replace 0.01 with 0.00001 in the discussion above.

And similarly, I can make 3x− 5 lie within any tolerance FOO of 7 by making x lie within
FOO

3
of 4.

This shows that I can meet any challenge, since I can just take the challenge tolerance and plug it in
for FOO. This proves that

lim
x→4

(3x− 5) = 7.
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Example. The graph of a function y = f(x) is shown below.
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y=f(x)

It appears that lim
x→4

f(x) = 3.

A (grey) horizontal strip of width 0.5 is drawn around y = 3. Draw a picture to show a range of x-values
around 4 for which the corresponding f(x)-values lie in the horizontal strip.

Use it to estimate the width of a symmetric vertical strip around 4 representing x-values whose corre-
sponding f(x)-values lie in the horizontal strip.

Suppose I’m challenged to make f(x) fall within 0.5 of 3. That is, I want my y-values to fall within the
grey strip in the picture.

On the right side of 4, the graph stays within the grey strip as far as 4.25; on the left side of 4, the
graph stays within the grey strip as far as 3.
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If I want a strip that’s symmetric about 4, I use the closer of the two values, which is 4.25. Now 4.25 is
0.25 units from 4, so my answer is: If x is within 0.25 of 4, then f(x) will be within 0.5 of 3.

If I can meet such a challenge with any positive number in place of 0.5, then I will have proved that
lim
x→4

f(x) = 3.
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Example. (Disproving a limit) Consider the function y = f(x) whose graph is show below.
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Suppose that Calvin Butterball thinks that lim
x→3

f(x) = 4. Use the limit definition to disprove it.

To disprove Calvin’s claim, I’ll make a challenge that Calvin can’t meet.
I challenge Calvin to make f(x) fall within 0.5 of 4. This means that he must find a range of x’s around

3 so that the corresponding part of the graph lies within the grey strip shown below:

3

4

You can see that there’s no way to do this. (Note: He’s not allowed to use x = 3 alone. Remember that
what the function does at x = 3 has no bearing on the value of the limit.)

Since this challenge can’t be met, lim
x→3

f(x) 6= 4. In fact, lim
x→3

f(x) is undefined.

Example. Suppose

f(x) =

{

5− 2x if x < 1
4x− 1 if x ≥ 1

.

It appears that lim
x→1

f(x) = 3. How close should x be to 1 in order to guarantee that f(x) will be within

0.0008 of 3?

As in an earlier example, I’ll work backwards.
From the left side, I’d need

|(5− 2x)− 3| < 0.0008

|2− 2x| < 0.0008

|2x− 2| < 0.0008

|x− 1| < 0.0004

The last inequality says that x should be within 0.0004 of 1.
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From the right side, I’d need
|(4x− 1)− 3| < 0.0008

|4x− 4| < 0.0008

|x− 1| < 0.0002

This means that x should be within 0.0002 of 1.
To satisfy the two requirements at the same time, I’ll use the smaller of the two numbers. So I’ll require

that x should be within 0.0002 of 1, which means

|x− 1| < 0.0002.

Here is the “real” proof, which I get by writing the scratch work in the reverse order.
Suppose |x− 1| < 0.0002. If x ≥ 1, I have

|x− 1| < 0.0002

|4x− 4| < 0.0008

|(4x− 1)− 3| < 0.0008

|f(x)− 3| < 0.0008

Now
|x− 1| < 0.0002 < 0.0004.

So if x < 1, I have
|x− 1| < 0.0004

|2x− 2| < 0.0008

|2− 2x| < 0.0008

|(5− 2x)− 3| < 0.0008

|f(x)− 3| < 0.0008

(From the second to the third line, I used the fact that |A−B| = |B −A|.)
Thus, if x is within 0.0002 of 1, then f(x) will be within 0.0008 of 3.

I’m almost ready to give the formal definition of a limit, but I need to mention something first as a
matter of honesty. It’s a technical issue, and it won’t arise in the majority of problems and examples (so
you can ignore it without much harm if you wish).

A technical point. In discussing lim
x→c

f(x), I’ll usually assume that f is defined on an open interval

containing c. That is, there are numbers a and b such that a < c < b and f is defined (at least) on a < x < b.
For one-sided limit (which I’ll discuss later), f(x) should be defined on an open interval with c as an

endpoint.
To understand why you want to do this, consider the function

f(x) =
{

lnx if x > 0
42 if x = −10

.

(So, for instance, f is simply not defined at x = −1, or at x = −57.)
In the definition of lim

x→−10

f(x), the “if” part of the definition would hold vacuously (for small open

intervals around −10), because there would be no values of x near −10 for which f was defined. Thus, the
limit L could be anything!

The condition on the domain of f is made to avoid silly cases like this one.
In order to avoid cluttering the statements of the definition or of proofs of limit properties, I usually

won’t state this assumption about the domains of functions in limits explicitly.
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Now I’ll give the formal definition of a limit, and show how to use it to do ǫ-δ proofs.

Definition. lim
x→c

f(x) = L means:

For every ǫ > 0, there is a δ, such that for all x in the domain of f , if δ > |x−c| > 0, then ǫ > |f(x)−L|.

“ǫ” is the Greek letter epsilon. It is the “challenge number”, the tolerance or maximum error you have
to meet. δ is the Greek letter delta. It is the “response number”, the setting on x which meets the challenge.
The Greek letters are used in this definition for traditional reaons; there is nothing otherwise special about
them.

Let’s see how proofs of limits work using the definition.

Example. Prove that lim
x→4

(7x− 3) = 25.

In this problem, 4 corresponds to c, 7x − 3 corresponds to f(x), and 25 corresponds to L in the limit
definition.

I have to show that, given any ǫ > 0, there is a δ, such that

if δ > |x− 4| > 0, then ǫ > |(7x− 3)− 25|.

Notice that I’m given ǫ, but I’m not told its value (which was the case in earlier examples). All I can
assume is that it’s some positive number. I have to come up with a δ that meets the condition above. To do
this, I work backwards as I did in earlier examples. This is “scratchwork”, and doesn’t count as the “real”
proof, which will come afterward.

Scratchwork. I want ǫ > |(7x− 3)− 25|. I’ll work backwards from this and try to get something that
looks like “(whatever) > |x− 4|”. Then I’ll set δ = (whatever) and try to do the real proof.

ǫ > |(7x− 3)− 25|

ǫ > |7x− 28|

ǫ > 7|x− 4|

ǫ

7
> |x− 4|

Okay — I’ll try δ =
ǫ

7
.

The real proof. Let δ =
ǫ

7
. I must show that

if δ > |x− 4| > 0, then ǫ > |(7x− 3)− 25|.

When you are proving an “if-then” statement, you get to assume the “if” part, and you prove the “then”
part. So assume

ǫ

7
= δ > |x− 4|.

The rest of the proof is easy: I just reverse the steps I did on scratchwork:

ǫ

7
> |x− 4|

ǫ > 7|x− 4|

ǫ > |7x− 28|

ǫ > |(7x− 3)− 25|
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Therefore, by the limit definition,
lim
x→4

(7x− 3) = 25.

A similar approach works for limits of the form lim
x→c

(ax+ b). Here is a harder example.

Example. Prove that lim
x→3

(x2 + 5x) = 24.

In this case, 3 corresponds to c, x2 + 5x corresponds to f(x), and 24 corresponds to L.

Scratchwork. I want ǫ > |(x2+5x)− 24|. I’ll work backwards from this and try to get something that
looks like “(whatever) > |x− 3|”. Then I’ll set δ = (whatever) and try to do the real proof.

ǫ > |(x2 + 5x)− 24|

ǫ > |x2 + 5x− 24|

ǫ > |(x+ 8)(x− 3)|

ǫ > |x+ 8||x− 3|

I can’t just divide both sides by |x+ 8| (like I divided by 7 in the last example:

ǫ

|x+ 8|
> |x− 3|.

The problem is that I can’t set δ =
ǫ

|x+ 8|
, because I would need to know x in order to know δ — but

δ is supposed to determine the range of x’s.
Instead, I need to make a “preliminary” setting of δ. I’ll provisionally set δ = 1. Then

1 = δ > |x− 3|

2 < x < 4

( )

2 3 4

1 1

Remember that you have complete control over δ. Setting δ to 1 is like adjusting a setting on an
instrument, where you make an initial rough setting, then fine-tune it. We’ll see how this works out when
we write the “real proof”.

Adding 8 to each term, I get
2 < x < 4

10 < x+ 8 < 12

|x+ 8| < 12

Remember that I want the inequality ǫ > |x+ 8||x− 3|.
If I could get ǫ > 12|x− 3|, then I’d have

12 > |x+ 8|

12|x− 3| > |x+ 8||x− 3|

ǫ > 12|x− 3| > |x+ 8||x− 3|
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But
ǫ > 12|x− 3|

ǫ

12
> |x− 3|

It looks like I should try δ =
ǫ

12
. . . but then, I remember I needed to set δ = 1 earlier. How can I

get both of these things to happen? The idea is to make δ the smaller of the two numbers 1 and
ǫ

12
— in

symbols,

δ = min
(

1,
ǫ

12

)

.

(“min” stands for “minimum”.) This means that

1 ≥ δ and
ǫ

12
≥ δ.

The real proof. Let δ = min
(

1,
ǫ

12

)

. I must show that:

if δ > |x− 3| > 0, then ǫ > |(x2 + 5x)− 24|.

So I may assume δ > |x− 3| > 0, and I have to prove ǫ > |(x2 + 5x)− 24|.
As I noted in the scratchwork, I know that

1 ≥ δ and
ǫ

12
≥ δ.

Take 1 ≥ δ first. Then
1 ≥ δ > |x− 3|

4 >x > 2

12 >x+ 8 > 10

12 > |x+ 8|

Next, I’ll use
ǫ

12
≥ δ. Multiply this inequality and the inequality 12 > |x+ 8| to get

ǫ = 12 ·
ǫ

12
> |x+ 8||x− 3|

ǫ > |x2 + 5x− 24|

ǫ > |(x2 + 5x)− 24|

Therefore, I’ve proved that lim
x→3

(x2 + 5x) = 24.
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