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The Limit Definition

Having discussed how you can compute limits, I want to examine the definition of a limit in more detail.

1 — cos(z8
You might wonder why it is necessary to be careful. Suppose you're trying to compute lirrb #
rT—r X

You might think of drawing a graph; many graphing calculators, for instance, produce a graph like the one
below:

-3 -2 -1 1 2 3

It looks as though the graph is dropping down to 0 near x = 0. From this, you might guess that the
limit is 0. In fact,
lim 1 — cos(z®) _ }
x—0 x16 2
It’s possible to justify this algebraically once you know a little about limits of trig functions.
Pictures can be helpful; so can experimenting with numbers. In many cases, pictures and numerical
experiments are inconclusive or even misleading. In these cases, how can you determine whether a proposed
answer is correct or not?

Because the limit definition is a bit abstract, I’ll start off with an informal definition.

Informal Definition. If f(x) can be made arbitrarily close to L for all s sufficiently close to ¢, then
lim f(x) = L.

This statement is like a guarantee. Think of making parts in a factory. Your customers won’t buy your
parts unless they meet certain specifications. So you might guarantee that your parts will be within 0.01 of
the customer’s specification.

Likewise, to say that }313}2 f(z) = L you must be able to guarantee that you can make f(z) fall within

(say) 0.01 of L. But you have to do more: You have to be able to make f(x) fall within any positive tolerance
of L — 0.0001, 0.0000004, and so on, no matter how small.
Another way to think of this is as meeting a challenge; for example:

Challenge: “I challenge you to make f(z) stay within 0.0005 of L.”

Your response: “I guarantee that every z within 0.003 of ¢ (except perhaps c itself) will give an f(x)
that is within 0.0005 of L.”

To prove that lim f(z) = L, you must be able to meet the challenge no matter what positive number is
Tr—c

used in place of 0.0005.
By the way, notice that = = ¢ is excluded in my guarantee. The reason is that in computing lim f(z),
xr—rc

we're concerned with what happens as x approaches ¢, not what f(c) is.

Before I give some examples, here’s an important fact about absolute value:

|A — B| = (the distance from A to B).
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|A-B]
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We want absolute values, which are always nonnegative, because a distance shouldn’t be negative.
Also, notice that

|A—B|=|B - A
That makes sense, because the distance from A to B should be the same as the distance from B to A.

For instance,
[8—2|=6|=6 and [|2—8|=|—6|=6.

Example. By plugging in x = 4, it appears that

lim(3z —5) =T1.

r—4

How close should z be to 4 to guarantee that 3x — 5 is within 0.01 of 77

Let’s work backwards: I want 3z — 5 to be within 0.01 of 7. This means

(32 — 5) — 7| < 0.01

32 — 12| < 0.01
3|z — 4| < 0.01
0.01
— 4] <« —

- 4] < =35

0.01 .
The last inequality says that the distance from z to 4 should be less than = So if x lies within =

of 4, I can guarantee that 3z — 5 will be within 0.01 of 7.
A formal proof would just reverse the steps above:

0.01

—4| < —
=4 < =

3|z — 4] < 0.01

3z — 12| < 0.01

|3z — 5) — 7| < 0.01

Can you see that if I'm challenged to make 3z — 5 lie within 0.00001 of 7, I should make x lie within

0.00001
3 of 47 Just replace 0.01 with 0.00001 in the discussion above.
O
of 4.

And similarly, I can make 3x — 5 lie within any tolerance FOO of 7 by making x lie within
This shows that I can meet any challenge, since I can just take the challenge tolerance and plug it in

for FOO. This proves that
lim(3x —5)=7. O

z—4




Example. The graph of a function y = f(z) is shown below.

y=f(x)
\\

It appears that lim f(z) = 3.
z—4
A (grey) horizontal strip of width 0.5 is drawn around y = 3. Draw a picture to show a range of z-values
around 4 for which the corresponding f(x)-values lie in the horizontal strip.

Use it to estimate the width of a symmetric vertical strip around 4 representing x-values whose corre-
sponding f(z)-values lie in the horizontal strip.

Suppose I'm challenged to make f(z) fall within 0.5 of 3. That is, I want my y-values to fall within the
grey strip in the picture.

On the right side of 4, the graph stays within the grey strip as far as 4.25; on the left side of 4, the
graph stays within the grey strip as far as 3.

If T want a strip that’s symmetric about 4, I use the closer of the two values, which is 4.25. Now 4.25 is
0.25 units from 4, so my answer is: If z is within 0.25 of 4, then f(x) will be within 0.5 of 3. O

If T can meet such a challenge with any positive number in place of 0.5, then I will have proved that
lin}l f(z) =3.
T—




Example. (Disproving a limit) Consider the function y = f(x) whose graph is show below.

L

3
Suppose that Calvin Butterball thinks that lirrg f(x) =4. Use the limit definition to disprove it.
T—r
To disprove Calvin’s claim, I’ll make a challenge that Calvin can’t meet.

I challenge Calvin to make f(x) fall within 0.5 of 4. This means that he must find a range of z’s around
3 so that the corresponding part of the graph lies within the grey strip shown below:

Ny

3

You can see that there’s no way to do this. (Note: He’s not allowed to use = 3 alone. Remember that
what the function does at x = 3 has no bearing on the value of the limit.)
Since this challenge can’t be met, lirré f(x) # 4. In fact, lirré f(x) is undefined. O
z— r—

Example. Suppose
5 —-2z ifz<l1
f(m)_{élx—l ifz>1"
It appears that lim1 f(z) = 3. How close should z be to 1 in order to guarantee that f(z) will be within
r—r
0.0008 of 37
As in an earlier example, I'll work backwards.

From the left side, I'd need
|(5 —2x) — 3| < 0.0008

12 — 2| < 0.0008
22 — 2| < 0.0008
|z — 1| < 0.0004

The last inequality says that x should be within 0.0004 of 1.
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From the right side, I’d need
|(4x — 1) — 3| < 0.0008

|4z — 4] < 0.0008
|z — 1] < 0.0002
This means that x should be within 0.0002 of 1.

To satisfy the two requirements at the same time, I’ll use the smaller of the two numbers. So I'll require
that x should be within 0.0002 of 1, which means

|z — 1] < 0.0002.

Here is the “real” proof, which I get by writing the scratch work in the reverse order.
Suppose |z — 1| < 0.0002. If > 1, I have

|z — 1] < 0.0002

4z — 4] < 0.0008

(42 — 1) — 3| < 0.0008
|f(x) — 3| < 0.0008

Now
|z — 1] < 0.0002 < 0.0004.

So if x < 1, I have
|z — 1| < 0.0004
|22 — 2| < 0.0008
|2 — 22| < 0.0008
|(5 —2z) — 3| < 0.0008
|f(z) — 3] < 0.0008

(From the second to the third line, T used the fact that |A — B| = |B — A|.)
Thus, if x is within 0.0002 of 1, then f(z) will be within 0.0008 of 3. [

I'm almost ready to give the formal definition of a limit, but I need to mention something first as a
matter of honesty. It’s a technical issue, and it won’t arise in the majority of problems and examples (so
you can ignore it without much harm if you wish).

A technical point. In discussing lim f(z), I'll usually assume that f is defined on an open interval
xr—c

containing c. That is, there are numbers a and b such that a < ¢ < b and f is defined (at least) on a < & < b.
For one-sided limit (which I'll discuss later), f(x) should be defined on an open interval with ¢ as an
endpoint.
To understand why you want to do this, consider the function

_flnz ifz>0
f(x)_{m ifr=—10

(So, for instance, f is simply not defined at x = —1, or at x = —57.)
In the definition of lim10 f(z), the “if” part of the definition would hold vacuously (for small open
T——

intervals around —10), because there would be no values of x near —10 for which f was defined. Thus, the
limit L could be anything!

The condition on the domain of f is made to avoid silly cases like this one.

In order to avoid cluttering the statements of the definition or of proofs of limit properties, I usually
won’t state this assumption about the domains of functions in limits explicitly.
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Now I'll give the formal definition of a limit, and show how to use it to do e-§ proofs.

Definition. lim f(z) = L means:
Tr—C

For every € > 0, there is a d, such that for all z in the domain of f, if § > |z —¢| > 0, then € > |f(z)—L|.

“e” is the Greek letter epsilon. It is the “challenge number”, the tolerance or maximum error you have
to meet. § is the Greek letter delta. It is the “response number”, the setting on x which meets the challenge.
The Greek letters are used in this definition for traditional reaons; there is nothing otherwise special about
them.

Let’s see how proofs of limits work using the definition.

Example. Prove that lim (72 — 3) = 25.
r—4
In this problem, 4 corresponds to ¢, 7x — 3 corresponds to f(z), and 25 corresponds to L in the limit
definition.
I have to show that, given any € > 0, there is a §, such that

if 6>|z—4/>0, then e>|(7x—3)—25|

Notice that I'm given €, but I'm not told its value (which was the case in earlier examples). All I can
assume is that it’s some positive number. I have to come up with a § that meets the condition above. To do
this, I work backwards as I did in earlier examples. This is “scratchwork”, and doesn’t count as the “real”
proof, which will come afterward.

Scratchwork. I want € > |(7z — 3) — 25|. I'll work backwards from this and try to get something that
looks like “(whatever) > |x — 4|”. Then I'll set § = (whatever) and try to do the real proof.

e > |(Tz — 3) — 25|

€> |7z — 28
€> Tz — 4|
;>|x—4|

Okay — D'll try § = ;

The real proof. Let § = ; I must show that

if §>|z—4/>0, then e>|(7Tx—3)— 25|

When you are proving an “if-then” statement, you get to assume the “if” part, and you prove the “then”

part. So assume
€

—=40>|z—4|.
=6 le—1
The rest of the proof is easy: I just reverse the steps I did on scratchwork:

€
-—>|r—4
C> e
e> Tz — 4|
€ > |Tx — 28|

€ > |(7Tx — 3) — 25|
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Therefore, by the limit definition,
lim (72 —3) =25. O

r—4

A similar approach works for limits of the form lim (ax + b). Here is a harder example.
Tr—c

Example. Prove that lin}))(x2 + bx) = 24.
T—

In this case, 3 corresponds to ¢, 22 + 5x corresponds to f(x), and 24 corresponds to L.

Scratchwork. I want € > |(2? + 5x) — 24|. T'll work backwards from this and try to get something that
looks like “(whatever) > |x — 3|”. Then I'll set § = (whatever) and try to do the real proof.
€ > |(x? 4 bx) — 24
€ > |z? + 5r — 24|
e> [(x+8)(x —3)|
€> |z + 8|z — 3|
I can’t just divide both sides by |z + 8| (like I divided by 7 in the last example:

€
|z + 8]

> |z — 3.

The problem is that I can’t set 6 = because I would need to know x in order to know 6 — but

|z + 8]
0 is supposed to determine the range of x’s.
Instead, I need to make a “preliminary” setting of §. I'll provisionally set § = 1. Then

1=9>|z—3]

2<z<4

1 1
I
2 3 4

Remember that you have complete control over §. Setting & to 1 is like adjusting a setting on an
instrument, where you make an initial rough setting, then fine-tune it. We’ll see how this works out when
we write the “real proof”.

Adding 8 to each term, I get

2<z<4

10<z+8<12
|z + 8| < 12

Remember that I want the inequality € > |z + 8||z — 3.
If T could get € > 12|z — 3|, then I'd have

12> |z + 8|
12|z — 3| > |z + 8|z — 3|
e > 12|z — 3| > |z + 8|z — 3]
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But
e > 12|z — 3|

€

-3

It looks like I should try 6 = 1—62 ...but then, I remember I needed to set 6 = 1 earlier. How can I

get both of these things to happen? The idea is to make § the smaller of the two numbers 1 and SR Y

12
€
= min (1,55 ).
) mln(,12

(“min” stands for “minimum”.) This means that

symbols,

€

1>9 d
= an 12

> 9.

The real proof. Let § = min (17 1—62) I must show that:

if 0>|r—3>0, then e>|(z?+5z)— 24|

So I may assume § > |z — 3| > 0, and I have to prove € > |(2? + 5z) — 24|.
As I noted in the scratchwork, I know that
€

1>6 and
=0 and 7

> 4.

Take 1 > § first. Then
1>6>|z—3|

4> >2
12>x+8>10
12 > |z + 8]

Next, I'll use % > §. Multiply this inequality and the inequality 12 > |z + 8| to get
=12 = > |z +8||z — 3|
€= TR x

€ > |2? + bz — 24|
€ > |(2? + 5x) — 24|

Therefore, I've proved that lin}o’(ac2 +5z)=24. O
z—
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