
9-6-2018

Limits at Infinity

In this section, I’ll discuss the limit of a function f(x) as x goes to ∞ and −∞. We’ll see that this is
related to horizontal asyptotes of a graph.

It’s natural to discuss vertical asymptotes as well, and I’ll explain how these are connected to values
of x where the limit of f(x) becomes infinite.

Let’s start with an example. Here is the graph of f(x) =
x2

x2 + 1
:

-10 -5 5 10

0.2

0.4

0.6

0.8

1

The graph approaches the horizontal line y = 1 as it goes out to the left and right. You write:

lim
x→+∞

x2

x2 + 1
= 1 and lim

x→−∞

x2

x2 + 1
= 1.

Here’s a rough definition. If the graph of f(x) approaches y = L as you plug in larger and larger positive
values for x, then

lim
x→+∞

f(x) = L.

Likewise, if the graph of f(x) approaches y = L as you plug in larger and larger negative values for x,
then

lim
x→−∞

f(x) = L.

As a numerical example, consider f(x) =
x2

x2 + 1
. If you set x = 106, you get

f(x) ≈ 0.999999999999000000000000999999999999000000000001.

That’s pretty close to 1, isn’t it?

Here are the precise definitions. They’re analogous to the ǫ-δ definitions of ordinary limits.

Definition. lim
x→∞

f(x) = L means: For every ǫ > 0, there is a number M , such that:

If x > M, then ǫ > |f(x)− L|.

(You can give a similar definition for lim
x→−∞

f(x) = L.)
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The definition says that I can make f(x) as close to L as I want, by making x sufficiently large.

L

M

As the picture shows, values of x greater than M produce values of f(x) that lie within ǫ of L.

Example. Prove that lim
x→∞

10x+ 4

5x+ 1
= 2.

Scratch work. I’ll start by working backwards from ǫ to M .

ǫ >

∣

∣

∣

∣

10x+ 4

5x+ 1
− 2

∣

∣

∣

∣

=

∣

∣

∣

∣

(10x+ 4)− 2(5x+ 1)

5x+ 1

∣

∣

∣

∣

=

∣

∣

∣

∣

2

5x+ 1

∣

∣

∣

∣

=
2

5x+ 1
.

(I can remove the absolute value bars, since x → ∞ means x will be large and positive.)

So

5x+ 1 >
2

ǫ

5x >
2

ǫ
− 1

x >
1

5

(

2

ǫ
− 1

)

This suggests that I should take M =
1

5

(

2

ǫ
− 1

)

.

The reason for doing things this way is that you may not prove something by assuming what you want
to prove. So the “working backward” part isn’t by itself a valid proof: It is possible that some of the steps
aren’t reversible. You can ensure that everything works properly by writing the proof in the correct order,
from assumptions to conclusion.

The real proof. Let ǫ > 0. Take M =
1

5

(

2

ǫ
− 1

)

.

Then if x > M , I have

x >
1

5

(

2

ǫ
− 1

)

5x >
2

ǫ
− 1

5x+ 1 >
2

ǫ
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Note that since ǫ > 0, the last inequality implies 5x+ 1 > 0. So

ǫ >
2

5x+ 1

ǫ >

∣

∣

∣

∣

2

5x+ 1

∣

∣

∣

∣

Dividing by 5x+1 in the first step is okay, because 5x+1 > 0 (so the inequality doesn’t “flip”). Likewise,

the second step is okay, because 5x+ 1 > 0, so
2

5x+ 1
is positive, so I can add the absolute values.

Continuing, I have

ǫ >

∣

∣

∣

∣

2

5x+ 1

∣

∣

∣

∣

=

∣

∣

∣

∣

10x+ 4

5x+ 1
− 2

∣

∣

∣

∣

.

This shows that lim
x→∞

10x+ 4

5x+ 1
= 2.

Most of the properties of ordinary limits hold for limits as x → ±∞.

Theorem. (a)
lim
x→∞

(f(x) + g(x)) = lim
x→∞

f(x) + lim
x→∞

g(x).

(b) If k is a number,
lim
x→∞

(k · f(x)) = k · lim
x→∞

f(x).

(c)
lim
x→∞

(f(x) · g(x)) = ( lim
x→∞

f(x)) · ( lim
x→∞

g(x)).

(d) If lim
x→∞

g(x) 6= 0, then

lim
x→∞

f(x)

g(x)
=

limx→∞ f(x)

limx→∞ g(x)
.

The statements mean that if the limits on the right side of the equation are defined, then the limits on
the left sides are defined, and the two sides are equal.

Proof. I’ll prove (a) by way of example. As in most limit proofs, you discover what to do by working
backward (“on scratch paper”). Then you write the “real proof” forward. I’ll omit the scratch work in this
case.

A reminder about something before I start: I’ll use the Triangle Inequality, which says that if p and
q are real numbers, then

|p|+ |q| ≥ |p+ q|.
Suppose that

lim
x→∞

f(x) = A and lim
x→∞

g(x) = B.

I want to show that
lim
x→∞

(f(x) + g(x)) = A+B.

Let ǫ > 0.
Since lim

x→∞
f(x) = A, I can find a number M such that if x > M , then

1

2
ǫ > |f(x)−A|.

Since lim
x→∞

g(x) = A, I can find a number N such that if x > N , then

1

2
ǫ > |g(x)−B|.
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Suppose that x > max(M,N). This means that x > M and x > N , so both of the
1

2
ǫ inequalities hold.

Hence, adding the inequalities, I get

ǫ =
1

2
ǫ+

1

2
ǫ

> |f(x)−A|+ |g(x)−B|
≥ | (f(x)−A) + (g(x)−B) |
= | (f(x) + g(x))− (A+B) |

(I used the Triangle Inequality in the “≥” step.) This proves that

lim
x→∞

(f(x) + g(x)) = lim
x→∞

f(x) + lim
x→∞

g(x).

Similar ideas are used in the proofs of (b), (c), and (d), though in some cases the algebra involved is a
little trickier.

Here is a property that I’ll use frequently.

Proposition. Let k > 0. Then

lim
x→+∞

1

xk
= 0.

Proof. Let ǫ > 0. I must find a number M such that if x > M and
1

xk
is defined, then

ǫ >

∣

∣

∣

∣

1

xk
− 0

∣

∣

∣

∣

=

∣

∣

∣

∣

1

xk

∣

∣

∣

∣

.

Set M =
1

ǫ1/k
. Note that ǫ1/k is defined and positive, since ǫ > 0 and k > 0. Suppose x > M . Since M

is positive, so is x, so
1

xk
is defined and positive.

I have

x > M =
1

ǫ1/k

xk >
1

ǫ

ǫ >
1

xk

ǫ >
1

xk

ǫ >

∣

∣

∣

∣

1

xk

∣

∣

∣

∣

Hence, lim
x→+∞

1

xk
= 0.

Is it true that

lim
x→−∞

1

xk
= 0 ?

It is — provided that
1

xk
is defined. What could go wrong? Suppose k =

1

2
. Then lim

x→−∞

1

x1/2
is

undefined, since x1/2 is not defined if x is negative and x → −∞ means that x is taking on negative values.
On the other hand,

lim
x→−∞

1

x4
= 0.
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Here are some examples of limits at +∞ and −∞.

Example. (a) Compute lim
x→+∞

2x3 − 3x+ 7

4− x2 − 5x3
.

(b) Compute lim
x→−∞

x15 − 3x9 + 47

x2 − x+ 1
.

(c) Compute lim
x→+∞

x− 17

x3/2 − 4x+ 2
= 0.

(a) In limits at infinity involving powers of x, the rule of thumb is that the biggest powers dominate. In this
case, the biggest powers on the top and bottom are the x3’s. Therefore, the limit in (a) behaves almost like

lim
x→+∞

2x3

−5x3
= −2

5
.

So you expect the answer to be −2

5
.

On way to see this formally is to divide the top and bottom by x3:

lim
x→+∞

2x3 − 3x+ 7

4− x2 − 5x3
= lim

x→+∞

2− 3

x2
+

7

x3

4

x3
− 1

x
− 5

.

Now as x → +∞,
a number

xpositive power
→ a number

something big
= 0.

Hence,

lim
x→+∞

2− 3

x2
+

7

x3

4

x3
− 1

x
− 5

= lim
x→+∞

2− 0 + 0

0− 0− 5
= −2

5
.

Here’s a picture of
2x3 − 3x+ 7

4− x2 − 5x3
:
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(b)

lim
x→−∞

x15 − 3x9 + 47

x2 − x+ 1
= −∞.

In this case, the x15 on top beats out the puny x2 on the bottom.
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By the way, it would be correct to say this limit diverges. However, it’s more informative to say how

it diverges. In this case, the function
x15 − 3x9 + 47

x2 − x+ 1
becomes large and negative, so you write −∞ for the

limit.

(c)

lim
x→+∞

x− 17

x3/2 − 4x+ 2
= 0.

Here the x3/2 on the bottom beats out the x1 on the top.

Suppose that
lim

x→+∞
f(x) = L.

I noted above that this means that the graph of f(x) approaches the line y = L as you move to the
right.

Likewise, suppose
lim

x→−∞
f(x) = L.

This means that the graph of f(x) approaches the line y = L as you move to the left. In these situations,
y = L is a horizontal asymptote for the graph of f(x).

Not all graphs have horizontal asymptotes — for example, y = x2 goes to ∞ as x → ∞ and as x → −∞.
You can check for the presence of horizontal asymptotes by computing limx→+∞ f(x) and limx→−∞ f(x)
and seeing if either is a number.

Example. Find the horizontal asymptotes (if any) of y =
x

x2 + 1
.

lim
x→∞

x

x2 + 1
= 0 and lim

x→−∞

x

x2 + 1
= 0.

Therefore, y = 0 is a horizontal asymptote for the graph at +∞ and at −∞. The graph is shown below:
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Example. Find the horizontal asymptotes of f(x) =
x√

x2 + 4
.

The limit at +∞ works without any surprises. The highest power on the top and the bottom is x (since√
x2 looks like x), so divide the top and bottom by x:

lim
x→+∞

x√
x2 + 4

= lim
x→+∞

1
1

x

√
x2 + 4

= lim
x→+∞

1
√

1 +
4

x2

=
1

1
= 1.
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However, the limit at −∞ is a little tricky! Here’s the computation:

lim
x→−∞

x√
x2 + 4

= lim
x→−∞

1
1

x

√
x2 + 4

= lim
x→−∞

1

−
√

1 +
4

x2

=
1

−1
= −1.

Where did that negative sign come from? Look at the bottom, which was
1

x

√
x2 + 4. x is going to −∞,

so x is taking on negative values. Now
√· is positive, so 1

x

√
x2 + 4 is negative.

When you push the
1

x
into the square root, you must leave a negative sign outside. Otherwise, you’d

have
√
junk, a positive thing.

Alternatively, to think of it the other way,

√
x2 = |x|.

So if x is negative (because x → −∞), I have
√
x2 = |x| = −x.

Thus, this is a case where it matters that x is going to −∞, as opposed to +∞. Here’s the graph:
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How do logarithms and exponentials behave as x → +∞ or x → −∞? The relevant facts are summarized
below.

lim
x→+∞

ln ax = +∞ and lim
x→0+

ln ax = −∞ if a > 0.

lim
x→+∞

eax = +∞ and lim
x→−∞

eax = 0 if a > 0.

I’ve graphed y = ln 2x (on the left) and y = e3x (on the right) below; you can see that the pictures are
consistent with the formulas above.
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For example, the graph of y = ln 2x goes downward asymptotically along the y-axis from the right. This
confirms that lim

x→0+
ln 2x = −∞.

Likewise, the graph of e3x rises sharply as you go to the right; this confirms that lim
x→+∞

e3x = +∞.

Note that if a < 0 in eax, the limits are reversed. Specifically,

lim
x→+∞

eax = 0 and lim
x→−∞

eax = +∞ if a < 0.

Example. (a) Compute
lim

x→+∞
ln 1.37x and lim

x→0+
ln 1.37x.

(b) Compute
lim

x→+∞
e6x and lim

x→−∞
e6x.

(c) Compute

lim
x→+∞

e−
√
2x and lim

x→−∞
e−

√
2x.

(a)
lim

x→+∞
ln 1.37x = +∞ and lim

x→0+
ln 1.37x = −∞.

(b)
lim

x→+∞
e6x = +∞ and lim

x→−∞
e6x = 0.

(c)

lim
x→+∞

e−
√
2x = 0 and lim

x→−∞
e−

√
2x = +∞.

Infinity can also appear in limits in connection with vertical asymptotes. I’ll say that the graph of a
function y = f(x) has a vertical asymptote at x = a if at least one of the limits

lim
x→a+

f(x) or lim
x→a−

f(x) is either +∞ or −∞.

Example. The graph below has a vertical asymptote at x = a:

x=a

What are lim
x→a+

f(x) and lim
x→a−

f(x)?
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lim
x→a+

f(x) = −∞ while lim
x→a−

f(x) = +∞.

In general, you might suspect the presence of a vertical asymptote at an isolated value of x for which
f(x) is undefined. To confirm your suspicion, you need to compute the left- and right-hand limits at the
point.

Example. Locate the vertical asymptotes of f(x) =
1

(x− 1)(x− 2)
and sketch the graph near the asymp-

totes.

f(x) is undefined at x = 1 and at x = 2. I’ll check for vertical asymptotes by computing the left- and
right-hand limits at x = 1 and at x = 2. I’ll work through the first one carefully.

lim
x→1+

1

(x− 1)(x− 2)
= −∞.

To see this, consider numbers close to 1 but to the right of 1. Then x− 1 will be positive, while x− 2
will be negative. For example, if x = 1.1, then x − 1 = 0.1 while x − 2 = −0.9. All together, the fraction

1

(x− 1)(x− 2)
will be negative. But plugging x = 1 into the fraction gives

1

0
. Since the result is negative

and infinite, it must be −∞.

You can see numerical evidence for this by plugging (e.g.) x = 1.001 into
1

(x− 1)(x− 2)
.

1

(1.001− 1)(1.001− 2)
≈ −1001.

This is a large negative number, which suggests that the limit is −∞.
In similar fashion,

lim
x→1−

1

(x− 1)(x− 2)
= +∞,

lim
x→2+

1

(x− 1)(x− 2)
= +∞,

lim
x→2−

1

(x− 1)(x− 2)
= −∞.

Here’s the graph:
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Example. f(x) =
x2 − 1

x− 1
is undefined at x = 1. Does it have a vertical asymptote at x = 1?

The fact that a function is undefined at an isolated value does not imply that it has a vertical asymptote

there. The graph of f(x) =
x2 − 1

x− 1
looks like this:

x

y

You can see this by noting that, for x 6= 1,

x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
= x+ 1.

Thus, the graph is the same as the graph of the line y = x+1 except at x = 1, where there’s a hole. In
other words,

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x− 1)(x+ 1)

x− 1
= lim

x→1
(x+ 1) = 2.

In particular, the graph does not have a vertical asymptote at x = 1.
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