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Log and Exponential Derivatives

Here are the formulas for the derivatives of lnx and ex:

d

dx
lnx =

1

x
and

d

dx
ex = ex.

I’ll derive them at the end. First, I’ll give some examples to show how they’re used.

Example. Compute
d

dx
x10 lnx.

Using the Product Rule, I get

d

dx
x10 lnx = x10 ·

1

x
+ (lnx)(10x9) = x9 + 10x9 lnx.

Note: Don’t write “lnx10x9” for the second term, since that means “ln(x·10x9)”. Either put the “10x9”
on the left side of the log, or write “(lnx)(10x9)”.

Example. Find the equation of the tangent line to f(x) = x2 lnx at x = e.

Since f(e) = e2 ln 3 = e2, the point of tangency is (e, e2).
Using the Product Rule, I find that the derivative is

f ′(x) = x2 ·
1

x
+ (lnx)(2x) = x+ 2x lnx.

The slope of the tangent at x = e is

f ′(e) = e+ 2e ln e = e+ 2e · 1 = 3e.

The equation of the tangent line is

y − e2 = 3e(x− e), or y = 3ex− 2e2.

Example. For what values of x does y = x lnx have a horizontal tangent?

Using the Product Rule, I find that

y′ = x ·
1

x
+ (lnx)(1) = 1 + lnx.

The tangent line is horizontal when the derivative is equal to 0. Set y′ = 0 and solve for x:

1 + lnx = 0

lnx = −1

eln x = e−1

x = e−1
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(To go from the third equation to the fourth, I used the fact that eln(junk) = (junk).) There is a
horizontal tangent when x = e−1.

Here are several examples using the Chain Rule. Do you see the pattern?

d

dx
ln(x3 + 1) =

3x2

x3 + 1
.

d

dx
ln sinx =

cosx

sinx
.

d

dx
ln(83x+ 17) =

83

83x+ 17
.

d

dx
ln(ex + 13x) =

ex + 13

ex + 13x
.

In all of these cases,

d

dx
ln =

d

dx .

I’ll often use this rule in differentiating logs.

The technique used in the next two examples is called logarithmic differentiation. It gives a useful
way of differentiating expressions of the form P (x)Q(x), where both P and Q are functions of x.

Example. (Logarithmic differentiation) Compute
d

dx
xx.

You can’t use the Power Rule, because the power is x, not a number.
To do this, first, set y = xx. Take logs:

ln y = lnxx = x lnx.

Notice that I used the log rule
lnAB = B lnA.

Now differentiate both sides of ln y = x lnx. You need the Chain Rule on the left (or the rule from the
last example), and the Product Rule on the right:

y′

y
= (x)

(

1

x

)

+ (lnx)(1)

y′ = y(1 + lnx)

y′ = xx(1 + lnx)

Note: It’s also possible to do this by writing

xx = eln xx

= ex ln x.

You can differentiate ex ln x using the Chain Rule.

Example. (Logarithmic differentiation) Compute
d

dx
(x2 + 9)sin x.
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y = (x2 + 9)sin x

ln y = ln(x2 + 9)sin x

ln y = (sinx) ln(x2 + 9)

y′

y
= (sinx)

(

2x

x2 + 9

)

+ [ln(x2 + 9)](cosx)

y′ = y

(

(sinx)

(

2x

x2 + 9

)

+ [ln(x2 + 9)](cosx)

)

y′ = (x2 + 9)sin x

(

(sinx)

(

2x

x2 + 9

)

+ [ln(x2 + 9)](cosx)

)

Now here are some examples using the differentiation rule for ex.

Example. Compute
d

dx

3ex + 1

4x11 + 3x+ 1
.

Using the Quotient Rule, I get

d

dx

3ex + 1

4x11 + 3x+ 1
=

(4x11 + 3x+ 1)(3ex)− (3ex + 1)(44x10 + 3)

(4x11 + 3x+ 1)2
.

Example. Find the value(s) of x for which y = xe8x has a horizontal tangent.

Using the Product Rule, I have

y′ = (x)(8e8x) + e8x = 8xe8x + e8x.

Since I’m looking for horizontal tangents, I set y′ = 0 and solve for x:

8xe8x + e8x = 0

(8x+ 1)e8x = 0

Since e8x can’t ever equal 0, I may divide it out. This gives 8x+ 1 = 0, or x = −
1

8
.

Here are several examples using the Chain Rule. Do you see the pattern?

d

dx
e(x

3+4) = 3x2e(x
3+4).

d

dx
e(13x+5) = 13e(13x+5).

d

dx
ecot x = −(cscx)2ecot x.

d

dx
e1/x =

(

−
1

x2

)

e1/x.
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In all of these cases,
d

dx
e =

(

d

dx

)

e .

I’ll often use this formula in differentiating exponentials.

Remark. Sometimes you may have expressions like

e(3x
4+2x3

−17x+9).

The power is so large that it’s inconvenient to write in the usual “superscript” form. For one thing, the
smaller font can make it hard to read. In situations like this, you can use exponential notation:

expA = eA.

Thus, the preceding expression can be written as

exp(3x4 + 2x3 − 17x+ 9).

You can use the formula for the derivative of lnx to derive the formula for differentiating logs to other
bases.

Suppose that a > 0. The conversion formula for logs says that

loga x =
lnx

ln a
.

Therefore, since
1

ln a
is constant,

d

dx
loga x =

d

dx

lnx

ln a
=

1

ln a

d

dx
lnx =

1

ln a
·
1

x
=

1

x ln a
.

In other words, the formula for differentiating loga x is

d

dx
loga x =

1

x ln a
.

Example. Compute:

(a)
d

dx
log17 x.

(b)
d

dx
log3(x

4 + 5x+ 2).

(c)
d

dx
x2 log10 x.

(a)
d

dx
log17 x =

1

x ln 17
.

(b)
d

dx
log3(x

4 + 5x+ 2) =
4x3 + 5

(x4 + 5x+ 2) ln 3
.

4



(c)

d

dx
x2 log10 x = (x2)

(

1

x ln 10

)

+ (log10 x)(2x).

What about exponentials to other bases?

Let y = ax. Then

ln y = ln ax

ln y = x ln a

y′

y
= ln a

y′ = y ln a = axlna

I used the Chain Rule to differentiate ln y. The rule is:

d

dx
ax = ax ln a.

Notice that when a = e, the formula becomes

d

dx
ex = ex ln e = ex · 1 = ex.

This agrees with the differentiation formula for ex.

Example. Compute:

(a)
d

dx

(

355

113

)x

.

(b) 7x log8 x.

(c)
2x + 3x

4x + 5x
.

(a)

d

dx

(

355

113

)x

=

(

355

113

)x

ln
355

113
.

(b)

d

dx
7x log8 x = (7x)

(

1

x ln 8

)

+ (log8 x)(7
x ln 7).

(c)

d

dx

2x + 3x

4x + 5x
=

(4x + 5x)(2x ln 2 + 3x ln 3)− (2x + 3x)(4x ln 4 + 5x ln 5)

(4x + 5x)2
.

Now I’ll show where the derivative formulas for lnx and ex come from. I have to begin with a precise
definition.
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If x ≥ 1, then lnx, the natural log of x, is defined to be the area under the graph of y =
1

t
from 1 to

x:
y

1

The shaded area

        is ln x

x t

Note that since a segment has zero area, ln 1 = 0.
If x < 1, then lnx is the negative of the area under the graph from 1 to x.
This may not be the definition you’re familiar with from earlier courses, but it turns out to give the

same thing. The advantage of this definition is that it’s good for doing calculus.

What is
d

dx
lnx? The definition of the derivative says if f(x) = lnx, then

f ′(x) = lim
h→0

ln(x+ h)− lnx

h
.

Now
ln(x+ h) is the area under the curve from 1 to x+ h,

lnx is the area under the curve from 1 to x.

So by subtraction, the top of the fraction ln(x+ h)− lnx is the shaded area in this picture:

y

x tx+h1

Build two rectangles, one below the curve and one above the curve:

y

x tx+h

Obviously,
(little rectangle area) < ln(x+ h)− lnx < (big rectangle area). (∗)
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Both rectangles have base (x+ h)− x = h.

y

x tx+h

1/x
1/(x+h)

The height of the big rectangle is
1

x
(that is, x plugged into the curve equation y =

1

t
).

The height of the little rectangle is
1

x+ h
.

Therefore,

(big rectangle area) = h ·
1

x
and (little rectangle area) = h ·

1

x+ h
.

Plugging these into (*) above and dividing by h, I get

h ·
1

x+ h
< ln(x+ h)− lnx < h ·

1

x
,

1

x+ h
<

ln(x+ h)− lnx

h
<

1

x
.

Now take the limit as h → 0.

On the left side,
1

x+ h
→

1

x
.

On the right side,
1

x
→

1

x
.

By the Squeezing Theorem,

lim
h→0

ln(x+ h)− lnx

h
=

1

x
.

(Actually, I’ve done this for h > 0, so this is the right-hand limit, but a similar argument works for the
left-hand limit.)

I’ve shown that
d

dx
lnx =

1

x
.

What about ex? In order to derive its derivative, I need a reasonably precise definition of this function.
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Look at the picture I used to define lnx:

y

1

The shaded area

        is ln x

x t

As x increases, the area increases. This means that lnx is one-to-one: If a 6= b, then ln a 6= ln b.
This in turn means that lnx has an inverse function. I’ll denote the inverse function by ex.
Since f−1(x) = ex for f(x) = lnx, I can use the formula for the derivative of an inverse function to get

the derivative formula for ex.
The formula for the derivative of an inverse function says

(f−1)′(x) =
1

f ′(f−1(x))
.

Since f(x) = lnx, I have f ′(x) =
1

x
. So

(f−1)′(x) =
1

f ′(f−1(x))
=

1

f ′(ex)
=

1
(

1

ex

) = ex.

I’ve shown that
d

dx
ex = ex.

You may still be uncomfortable by the way I defined lnx and ex, since they may not correspond to the
way they were defined for you in (say) precalculus courses. In order to justify these definitions better, later
on I’ll reinterpret the area definition for lnx as a definite integral. Then I’ll be able to show that lnx, by
this definition, has all the properties you’d expect a log function to have, such as

lnAB = lnA+ lnB or lnAB = B lnA.

I’ll also be able to justify the corresponding properties for ex, and this will show that these new definitions
“agree with” the ones you may have seen earlier.
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