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The Natural Logarithm

In earlier courses, you may have seen logarithms defined in terms of raising bases to powers. For example,

log2 8 = 3 because 23 = 8.

In those terms, the natural logarithm lnx = loge x should be the power to which you raise e to get
x. (Remember that lnx is just shorthand for loge x.)

Now
e = 2.718281828459045 . . . .

e is represented by an infinite non-repeating decimal (like π). So, for instance, ln 4 is the power to which
you raise e = 2.718281828459045 . . . to get 4. How would you figure that out?

You might also wonder where e comes from: How do you compute it? And why choose such an ugly
number for a logarithm base?

In this section, I’ll take a different approach to the natural log. I’ll define it using calculus as the area
under a curve. For starters, this allows us to compute its derivative easily. But what does this have to do
with logarithms defined in terms of raising bases to powers?

When you studied logarithms, you learned that they satisfy certain properties:

(a) loga xy = loga x+ loga y.

(b) loga
x

y
= loga x− loga y.

(c) loga x
p = p loga x.

(d) loga 1 = 0.

I’ll show that the log I define as an area satisfies those properties. That gives some justification for
considering it to be a “logarithm”.

To begin with, the Power Rule says

∫

xn dx =
1

n+ 1
xn+1 + C for n 6= −1.

The formula does not apply to
∫

1

x
dx.

An antiderivative F (x) of
1

x
would have to satisfy

d

dx
F (x) =

1

x
.

But the Fundamental Theorem implies that if x > 0, then

d

dx

∫ x

1

1

t
dt =

1

x
.

Thus,

∫ x

1

1

t
dt plays the role of F (x).

Define the natural log function lnx by

lnx =

∫ x

1

1

t
dt for x > 0.
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By construction, if x > 0,

d

dx
lnx =

1

x
, and

∫

1

x
dx = lnx+ C.

∫ x

1

1

t
dt represents the area under f(t) =

1

t
from 1 to x:

1 x

f(t) = 1/t

ln x

t

y

lnx has many properties you’d expect a logarithm to have. For example,

ln 1 =

∫ 1

1

1

t
dt = 0.

You’d expect the log of a product to equal the sum of the logs. If a and b are positive numbers, then

ln(ab) =

∫ ab

1

1

t
dt =

∫ a

1

1

t
dt+

∫ ab

a

1

t
dt.

In the second integral, let u =
t

a
, so du =

dt

a
, and dt = a du. When t = a, u = 1; when t = ab, u = b.

So
∫ a

1

1

t
dt+

∫ ab

a

1

t
dt =

∫ a

1

1

t
dt+

∫ b

1

1

u
du = ln a+ ln b.

In other words,
ln(ab) = ln a+ ln b.

In similar fashion, you can verify that

ln
a

b
= ln a− ln b and lnxp = p lnx.

Thus, there is some justification in calling lnx a logarithm, because it has the same properties you’d
expect logs to have.

Here are some additional properties of lnx.
First,

d

dx
lnx =

1

x
> 0 for x > 0.

Therefore, the graph of lnx is increasing for x > 0.
Moreover,

d2

dx2
lnx = −

1

x2
< 0 for x > 0.

Therefore, the graph of lnx is concave down for x > 0.

2



Next, consider the following picture:

1

f(t) = 1/t

2 3 4

The area under the curve from 1 to 4 is ln 4. It is greater than the sum of the areas of the three
rectangles, so

ln 4 >
1

2
+

1

3
+

1

4
=

13

12
> 1.

If n is a positive integer, then

n ln 4 > n, or ln 4n > n.

So if x > 4n, then
lnx > ln 4n > n.

Since n is an arbitrary positive integer, I can make lnx arbitrarily large by making x sufficiently large.
This proves that

lim
x→+∞

lnx = +∞.

Here’s the graph of lnx:

y = ln x

1 x

y

The differentiation formula for lnx works together with the other differentiation rules in the usual ways.

Example. Compute:

(a)
d

dx
ln(x2 + x+ 7).

(b)
d

dx
ln(sinx+ x3).
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(c)
d

dx

[

(lnx)7 + ln(x7)
]

.

(d)
d

dx

x2

lnx
.

(e)
d

dx
ln (ln (lnx+ 1)).

(a)
d

dx
ln(x2 + x+ 7) =

2x+ 1

x2 + x+ 7
.

(b)
d

dx
ln(sinx+ x3) =

cosx+ 3x2

sinx+ x3
.

(c)
d

dx

[

(lnx)7 + ln(x7)
]

=
d

dx

[

(lnx)7 + 7 lnx
]

= 7(lnx)6 ·
1

x
+

7

x
.

(d)

d

dx

x2

lnx
=

(lnx)(2x)− (x2)

(

1

x

)

(lnx)2
=

2x lnx− x

(lnx)2
.

(e)
d

dx
ln (ln (lnx+ 1)) =

(

1

ln (lnx+ 1)

)(

1

lnx+ 1

)(

1

x

)

.

If I say that “
d

dx
f(x) = g(x)” — the derivative of f(x) is g(x) — then g(x) should be defined wherever

f(x) is defined. Therefore, it is not really correct to say without the qualification x > 0 that “
d

dx
lnx =

1

x
”.

For
1

x
is defined for x 6= 0, whereas lnx is only defined for x > 0.

It turns out that the correct statement is:

d

dx
ln |x| =

1

x
for x 6= 0.

For x > 0, this is the same as the old formula. For x < 0, |x| = −x, so

d

dx
ln |x| =

d

dx
ln(−x) =

−1

−x
=

1

x
.

So our new antiderivative formula is
∫

1

x
dx = ln |x|+ C.

You can omit the absolute value signs if the quantity inside is never negative. For example,

∫

2x

x2 + 1
dx = ln(x2 + 1) + C.

Since x2 + 1 is always positive, I can write “ln(x2 + 1)” instead of “ln |x2 + 1|”.
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Example. Compute

∫

dx

2x− 5
.

∫

dx

2x− 5
=

∫

1

u

du

2
=

1

2

∫

1

u
du =

1

2
ln |u|+ C =

1

2
ln |2x− 5|+ C.

[

u = 2x− 5, du = 2 dx, dx =
du

2

]

Example. Compute

∫

x2

x3 + 2
dx.

∫

x2

x3 + 2
dx =

∫

x2

u

du

3x2
=

1

3

∫

1

u
du =

1

3
ln |u|+ C =

1

3
ln |x3 + 2|+ C.

[

u = x3 + 2, du = 3x2 dx, dx =
du

3x2

]

You can use logarithmic differentiation to compute derivatives which are difficult to compute in
other ways.

Example. Compute
d

dx
(x2 + 1)x

4

.

Let y = (x2 + 1)x
4

. Taking logs and bringing the power down, I get

ln y = ln(x2 + 1)x
4

= x4 ln(x2 + 1).

Differentiate both sides, using the Chain Rule on the left and the Product Rule (and Chain Rule) on
the right:

y′

y
= (x4)

(

2x

x2 + 1

)

+ [ln(x2 + 1)](4x3).

Multiply both sides by y to clear the fraction on the left, then substitute y = (x2 + 1)x
4

:

y′ = y

(

(x4)

(

2x

x2 + 1

)

+ [ln(x2 + 1)](4x3)

)

= (x2 + 1)x
4

(

(x4)

(

2x

x2 + 1

)

+ [ln(x2 + 1)](4x3)

)

.

I can use calculus to construct the exponential function ex.

For x > 0, I have
d

dx
lnx =

1

x
.

Since x > 0, I have
d

dx
lnx =

1

x
> 0. This means that lnx increases for x > 0. Next, I use following

facts:

(a) An increasing function f is injective: If f(a) = f(b), then a = b.

(b) An injective function f : X → Y has an inverse function f−1 : Y → X.

Applying these facts to lnx, I find that it has an inverse function, which I will denote ex (or exp(x)).
Thus:
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1. ex is a function from R to the positive real numbers (because lnx is a function from the positive real
numbers to R).

2. eln x = x for x > 0 and ln ex = x for x ∈ R.

It’s easy to use the properties of the natural log to derive corresponding properties of ex:

(a) ex+y = ex · ey.

(b) ex−y =
ex

ey
.

(c) (ex)p = exp.

(d) e0 = 1.

To complete the discussion, I can use lnx and ex to define logs and exponentials to other bases.

(a) If a > 0 and x > 0, define loga x =
lnx

ln a
.

(b) If a > 0, define ax = ex ln a.

With these definitions,

aloga
x = a(ln x)/(ln a) = e(ln x)/(ln a)·ln a = eln x = x.

In words, this says that loga x is the power to which you raise a to get x — the definition of a log in
terms of a base raised to a power that you knew before.

Using the definitions for loga x and ax, I also get the differentiation formulas

d

dx
loga x =

1

x ln a
and

d

dx
ax = ax ln a.

The point of doing things using calculus is not that we have any new properties. Rather, it allows us
to derive properties which were just stated and taken for granted in a rigorous way.
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