Rectangle Sums

You can approximate the area under a curve using rectangles. To do this, divide the base interval into pieces (subintervals). Then on each subinterval, build a rectangle that goes up to the curve.

What does it mean to "go up to the curve"? You have to make a choice about how the height of each rectangle depends on the curve. In the picture above, for my rectangle height I always used the height of the curve above the left-hand endpoint of each subinterval.

In the picture above, I used subintervals of different sizes. For simplicity, you will often use subintervals of the same size - so your rectangles all have the same width. In the picture below, I've used 8 rectangles of equal widths, and for my rectangle height I always used the height of the curve above the right-hand endpoint of each subinterval.

Here's an example with a specific function. I'll use $f(x)=\sin \left(x^{2}\right)$. In each case, I'll use the base interval $0 \leq x \leq 1.5$ divided into 6 equal subintervals:

$$
[0,0.25],[0.25,0.5],[0.5,0.75],[0.75,1.0],[1.0,1.25],[1.25,1.5]
$$

Here is the picture if I use the left-hand endpoint of each subinterval to get the height of each rectangle:

The sum of the areas of the rectangles is:

$$
\begin{gathered}
(\sin 0)(0.25)+\left(\sin \frac{1}{16}\right)(0.25)+\left(\sin \frac{1}{4}\right)(0.25)+\left(\sin \frac{9}{16}\right)(0.25)+(\sin 1)(0.25)+\left(\sin \frac{25}{16}\right)(0.25)= \\
\left(\sin 0+\sin \frac{1}{16}+\sin \frac{1}{4}+\sin \frac{9}{16}+\sin 1+\sin \frac{25}{16}\right)(0.25) \approx 0.671151
\end{gathered}
$$

Notice that the rectangle width 0.25 factors out of the sum - you add up the f 's, then multiply by 0.25 . This will always be possible if you use subintervals of equal length.

Here is the picture if I use the right-hand endpoint of each subinterval to get the height of each rectangle:

In this case, the sum of the areas of the rectangles is

$$
\begin{gathered}
\left(\sin \frac{1}{16}\right)(0.25)+\left(\sin \frac{1}{4}\right)(0.25)+\left(\sin \frac{9}{16}\right)(0.25)+(\sin 1)(0.25)+\left(\sin \frac{25}{16}\right)(0.25)+\left(\sin \frac{9}{4}\right)(0.25)= \\
\\
\left(\sin \frac{1}{16}+\sin \frac{1}{4}+\sin \frac{9}{16}+\sin 1+\sin \frac{25}{16}+\sin \frac{9}{4}\right)(0.25) \approx 0.865669
\end{gathered}
$$

Here is the picture if I use the midpoint of each subinterval to get the height of each rectangle:

The midpoints of the subintervals are:

$$
0.125,0.375,0.625,0.875 .1 .125,1.375
$$

In this case, the sum of the areas of the rectangles is

$$
\begin{gathered}
\left(\sin \frac{1}{64}\right)(0.25)+\left(\sin \frac{9}{64}\right)(0.25)+\left(\sin \frac{25}{64}\right)(0.25)+\left(\sin \frac{49}{64}\right)(0.25)+\left(\sin \frac{81}{64}\right)(0.25)+\left(\sin \frac{121}{64}\right)(0.25)= \\
\\
\left(\sin \frac{1}{64}+\sin \frac{9}{64}+\sin \frac{25}{64}+\sin \frac{49}{64}+\sin \frac{81}{64}+\sin \frac{121}{64}\right)(0.25) \approx 0.783156
\end{gathered}
$$

By comparison, the actual area under the curve is around 0.778238 .
You can get better approximations by taking more rectangles. For example, here is the left-hand endpoint picture with 50 rectangles:

Notice how much better the rectangles approximate the area under the curve.
With 200 rectangles, the left-hand endpoint sum is 0.775311 , the right-hand endpoint sum is 0.781147 , and the midpoint sum is 0.778242 . The three values are close to the actual value 0.778238 .

Example. Approximate the area under $f(x)=4-x^{2}$ for $0 \leq x \leq 2$, using 20 circumscribed rectangles of equal width.

Circumscribed means that you should use the largest function value on each interval to get the height of a rectangle. My subintervals are

$$
[0,0.1],[0.1,0.2],[0.2,0.3], \ldots,[1.9,2.0]
$$

In general, it can be difficult to determine where the largest function value is. However, by graphing $f(x)=4-x^{2}$ on $0 \leq x \leq 2$, you can see that the largest function value for each subinterval occurs at the left-hand endpoint.

So I use
0 for the first subinterval,
0.1 for the second subinterval,
0.2 for the third subinterval.

I continue in this fashion, all the way up to

$$
1.9 \text { for the twentieth subinterval. }
$$

I can write these points as

$$
0.1 n, \quad \text { for } \quad n=0,1, \ldots, 19
$$

So my function values are

$$
f(0), f(0.1), f(0.2), \ldots, f(1.9)
$$

These are the rectangles heights. Each height is multiplied by a width of 0.1. The total is

$$
\begin{gathered}
f(0) \cdot 0.1+f(0.1) \cdot 0.1+f(0.2) \cdot 0.1+\cdots+f(1.9) \cdot 0.1=\sum_{n=0}^{19} f(0.1 n) \cdot 0.1= \\
\sum_{n=0}^{19}\left(4-(0.1 n)^{2}\right) \cdot 0.1=\sum_{n=0}^{19}\left(0.4-0.001 n^{2}\right)
\end{gathered}
$$

Now the sum is in a form you can evaluate on your calculator. You should get 5.53 ; the actual value is 5.33333....

Example. Approximate the area under $y=\frac{1}{1+x^{3}}$ from $x=0$ to $x=1$ using 20 equal subintervals and evaluating the function at the left-hand endpoints.

$$
\sum_{n=0}^{19} f\left(n \cdot \frac{1}{20}\right) \cdot \frac{1}{20}=\sum_{n=0}^{19} \frac{1}{1+\left(\frac{n}{20}\right)^{3}} \cdot \frac{1}{20}=400 \sum_{n=0}^{19} \frac{1}{8000+n^{3}}
$$

You can use a calculator to approximate this sum; it's around 0.84799 .

In the preceding examples, I've assumed that the subintervals (which give the widths of the rectangle) are the same size. I've also chosen the evaluation points systematically - left-hand endpoints, right-hand endpoints, midpoints. These are conveniences to make setting up the computations simple.

In general, the subintervals don't have to be the same size, and I don't have to choose the evaluation points systematically. For example, here is an approximation to the area under $y=x^{2}$ from $x=0$ to $x=6$.

interval	x	$f(x)$	$f(x) \cdot \Delta x$
$[0,2]$	1.0	1.0	2.0
$[2,3]$	2.8	7.84	7.84
$[3,3.5]$	3.0	9.0	4.5
$[3.5,6]$	5.0	25.0	37.5
sum			51.84

This gives an approximate area of 51.84 . The actual area is 77 .

