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Rectangle Sums

You can approximate the area under a curve using rectangles. To do this, divide the base interval into
pieces (subintervals). Then on each subinterval, build a rectangle that goes up to the curve.

y

x

What does it mean to “go up to the curve”? You have to make a choice about how the height of each
rectangle depends on the curve. In the picture above, for my rectangle height I always used the height of
the curve above the left-hand endpoint of each subinterval.

In the picture above, I used subintervals of different sizes. For simplicity, you will often use subintervals
of the same size — so your rectangles all have the same width. In the picture below, I’ve used 8 rectangles
of equal widths, and for my rectangle height I always used the height of the curve above the right-hand
endpoint of each subinterval.
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Here’s an example with a specific function. I’ll use f(x) = sin(x2). In each case, I’ll use the base interval
0 ≤ x ≤ 1.5 divided into 6 equal subintervals:

[0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1.0], [1.0, 1.25], [1.25, 1.5]
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Here is the picture if I use the left-hand endpoint of each subinterval to get the height of each rectangle:
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The sum of the areas of the rectangles is:
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(0.25) ≈ 0.671151.

Notice that the rectangle width 0.25 factors out of the sum — you add up the f ’s, then multiply by
0.25. This will always be possible if you use subintervals of equal length.

Here is the picture if I use the right-hand endpoint of each subinterval to get the height of each rectangle:
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In this case, the sum of the areas of the rectangles is
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(0.25) ≈ 0.865669.
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Here is the picture if I use the midpoint of each subinterval to get the height of each rectangle:
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The midpoints of the subintervals are:

0.125, 0.375, 0.625, 0.875.1.125, 1.375

In this case, the sum of the areas of the rectangles is
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(0.25) ≈ 0.783156.

By comparison, the actual area under the curve is around 0.778238.
You can get better approximations by taking more rectangles. For example, here is the left-hand

endpoint picture with 50 rectangles:
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Notice how much better the rectangles approximate the area under the curve.
With 200 rectangles, the left-hand endpoint sum is 0.775311, the right-hand endpoint sum is 0.781147,

and the midpoint sum is 0.778242. The three values are close to the actual value 0.778238.

Example. Approximate the area under f(x) = 4 − x2 for 0 ≤ x ≤ 2, using 20 circumscribed rectangles of
equal width.

Circumscribed means that you should use the largest function value on each interval to get the height
of a rectangle. My subintervals are

[0, 0.1], [0.1, 0.2], [0.2, 0.3], . . . , [1.9, 2.0].
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In general, it can be difficult to determine where the largest function value is. However, by graphing
f(x) = 4 − x2 on 0 ≤ x ≤ 2, you can see that the largest function value for each subinterval occurs at the
left-hand endpoint.
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So I use
0 for the first subinterval,

0.1 for the second subinterval,

0.2 for the third subinterval.

I continue in this fashion, all the way up to

1.9 for the twentieth subinterval.

I can write these points as
0.1n, for n = 0, 1, . . . , 19.

So my function values are
f(0), f(0.1), f(0.2), . . . , f(1.9).

These are the rectangles heights. Each height is multiplied by a width of 0.1. The total is

f(0) · 0.1 + f(0.1) · 0.1 + f(0.2) · 0.1 + · · ·+ f(1.9) · 0.1 =
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Now the sum is in a form you can evaluate on your calculator. You should get 5.53; the actual value is
5.33333 . . ..

Example. Approximate the area under y =
1

1 + x3
from x = 0 to x = 1 using 20 equal subintervals and

evaluating the function at the left-hand endpoints.
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You can use a calculator to approximate this sum; it’s around 0.84799.
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In the preceding examples, I’ve assumed that the subintervals (which give the widths of the rectangle)
are the same size. I’ve also chosen the evaluation points systematically — left-hand endpoints, right-hand
endpoints, midpoints. These are conveniences to make setting up the computations simple.

In general, the subintervals don’t have to be the same size, and I don’t have to choose the evaluation
points systematically. For example, here is an approximation to the area under y = x2 from x = 0 to x = 6.

interval x f(x) f(x) ·∆x

[0, 2] 1.0 1.0 2.0

[2, 3] 2.8 7.84 7.84

[3, 3.5] 3.0 9.0 4.5

[3.5, 6] 5.0 25.0 37.5

sum 51.84

This gives an approximate area of 51.84. The actual area is 77.
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