Separation of Variables

Separation of variables is a method for solving a differential equation. I'll illustrate with some examples.

Example. Solve $\frac{d y}{d x}=2 x y$.
"Solve" usually means to find y in terms of x. In general, I'll be satisfied if I can eliminate the derivative by integration.

First, I rearrange the equation to get the x 's on one side and the y 's on the other (separation):

$$
\frac{d y}{y}=2 x d x
$$

This is a formal manipulation, since I'm temporarily treating $\frac{d y}{d x}$ as a quotient of $d y$ by $d x$. (See the remark below.)

Next, I integrate both sides:

$$
\begin{aligned}
& \int \frac{d y}{y}=\int 2 x d x \\
& \ln |y|=x^{2}+C
\end{aligned}
$$

I only need an arbitrary constant on one side of the equation. Finally, I solve for y in terms of x, if possible:

$$
\begin{aligned}
e^{\ln |y|} & =e^{x^{2}+C} \\
|y| & =e^{C} e^{x^{2}}
\end{aligned}
$$

Here's a convenient trick which I'll use in these situations. Think of $|y|$ as $\pm y$. Move the \pm to the other side:

$$
y=\mp e^{C} e^{x^{2}}
$$

Now define $C_{0}=\mp e^{C}$:

$$
y=C_{0} e^{x^{2}}
$$

The last step makes the equation nicer, and it's easier to solve for the arbitrary constant when you have an initial value problem. $\quad \square$

Remark. Here's a justification for the formal manipulation with $d x$ and $d y$. Think of x and y as depending on a third variables t, so $x=f(t)$ and $y=g(t)$. By the Chain Rule,

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

The initial equation becomes

$$
\begin{aligned}
& \frac{d y}{d x}=2 x y \\
& \frac{d y}{d t}=2 x y \\
& \frac{d x}{d t} \\
& y \frac{d y}{d t}=2 x \frac{d x}{d t}
\end{aligned}
$$

Then integrate both sides with respect to t.

$$
\begin{aligned}
\int y \frac{d y}{d t} d t & =\int 2 x \frac{d x}{d t} d t \\
\int y d y & =\int 2 x d x
\end{aligned}
$$

Then continue as above. In the example that follows, I'll just work formally with $d x$ and $d y$.
Example. Solve $\frac{d y}{d x}=\frac{x}{y}+\frac{1}{y}$, where $y(2)=4$.
Separate:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{y}(x+1) \\
y d y & =(x+1) d x
\end{aligned}
$$

Integrate:

$$
\begin{aligned}
\int y d y & =\int(x+1) d x \\
\frac{1}{2} y^{2} & =\frac{1}{2} x^{2}+x+C
\end{aligned}
$$

In this case, solving would produce plus and minus square roots, so I'll leave the equation as is. Plug in the initial condition: When $x=2, y=4$:

$$
\begin{aligned}
\frac{1}{2} \cdot 4^{2} & =\frac{1}{2} \cdot 2^{2}+2+C \\
8 & =2+2+C \\
C & =4
\end{aligned}
$$

Hence, the solution is

$$
\frac{1}{2} y^{2}=\frac{1}{2} x^{2}+x+4
$$

I'll use separation of variables to solve the equations for exponential growth and Neton's law of cooling.

