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Derivatives of Trigonometric Functions

In this section, I’ll discuss limits and derivatives of trig functions. I’ll look at an important limit rule
first, because I’ll use it in computing the derivative of sinx.

If you graph y = sinx and y = x, you see that the graphs become almost indistinguishable near x = 0:
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That is, as x → 0, x ≈ sinx. This approximation is often used in applications — e.g. analyzing the
motion of a simple pendulum for small displacements. I’ll use it to derive the formulas for differentiating
trig functions.

In terms of limits, this approximation says

lim
x→0

sinx

x
= 1.

(Notice that plugging in x = 0 gives
0

0
.) A derivation requires the Squeeze Theorem and a little

geometry. What I’ll give is not really a proof from first principles; you can think of it as an argument which
makes the result plausible.
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I’ve drawn a sector subtending an angle θ inside a circle of radius 1. (I’m using θ instead of x, since θ

is more often used for the central angle.) The inner right triangle has altitude sin θ, while the outer right
triangle has altitude tan θ. The length of an arc of radius 1 and angle θ is just θ.

(I’ve drawn the picture as if θ is nonnegative. A similar argument may be given if θ < 0.)
Clearly,

sin θ ≤ θ ≤ tan θ.

Divide through by sin θ:

1 ≤
θ

sin θ
≤

1

cos θ
.

As θ → 0,
1

cos θ
→ 1 — just plug in. By the Squeeze Theorem,

lim
θ→0

θ

sin θ
= 1.

Taking reciprocals, I get

lim
θ→0

sin θ

θ
= 1.

Example. Compute lim
x→0

sin 7x

x
.

Plugging in x = 0 gives
0

0
. I have to do some more work.

The limit formula has the form

lim
→0

sin
= 1.

In this example, = 7x. In order to apply the formula, I need = 7x on the bottom of the fraction as
well as inside the sine: They must “match”. I can’t do much about the 7x inside the sine, but I can make a
7x on the bottom easily using algebra:

lim
x→0

sin 7x

x
= 7 lim

x→0

sin 7x

7x
.

Let u = 7x. As x → 0, u = 7x → 0. So

7 lim
x→0

sin 7x

7x
= 7 lim

u→0

sinu

u
= 7 · 1 = 7.

I’ll often omit writing a substitution like u = 7x. Once I see that I have something of the form
sin

where → 0, I know it has limit 1.

Example. Compute lim
x→0

5x+ sin 3x

tan 4x− 7x cos 2x
.

Plugging in gives
0

0
.

The idea here is to create terms of the form
sin

, to which I can apply my limit rule. I’ll describe the

steps I’ll take first, then do the computation.

(a) I’ll convert the tangent term to sine and cosine. This is because my fundamental rule involves sine,
and I also know that cosx → cos 0 = 1 as x → 0 (so cosine terms aren’t much of an issue).
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(b) I’ll divide all the terms on the top and the bottom by x. This is in preparation for making terms of

the form
sin

.

(c) I’ll use the trick I used earlier to fix up numbers so the sine terms all have the form
sin

, where

the thing inside the sine and the thing on the bottom match.

Here’s the computation:

lim
x→0

5x+ sin 3x

tan 4x− 7x cos 2x
= lim

x→0

5x+ sin 3x
sin 4x

cos 4x
− 7x cos 2x

= lim
x→0

5x+ sin 3x
sin 4x

cos 4x
− 7x cos 2x

·

1

x
1

x

=

lim
x→0

5x

x
+

sin 3x

x
sin 4x

x cos 4x
−

7x cos 2x

x

= lim
x→0

5 +
sin 3x

x
sin 4x

x
·

1

cos 4x
− 7 cos 2x

=

lim
x→0

5 + 3 ·
sin 3x

3x

4 ·
sin 4x

4x
·

1

cos 4x
− 7 cos 2x

=
5 + 3 · 1

4 · 1 · 1− 7 · 1
= −

8

3
.

As x → 0, the terms
sin 4x

4x
and

sin 3x

3x
both go to 1 by the sine limit formula. On the other hand, the

terms cos 2x and cos 4x both go to 1, since cos 0 = 1 and cosx is continuous.

Example. (a) Compute lim
x→0

1− cosx

x2
.

(b) Compute lim
x→0

1− cos(x6)

x12
.

(a) Plugging in gives
0

0
. The limit may or may not exist.

The idea is to use a trig identity 1 − (cosx)2 = (sinx)2 to change the cosines into sines, so I can use
my sine limit formula. It is kind of like multiplying the top and bottom of a fraction by the conjugate to
simplify a radical expression.

lim
x→0

1− cosx

x2
= lim

x→0

1− cosx

x2
·
1 + cosx

1 + cosx
= lim

x→0

1− (cosx)2

x2(1 + cosx)
= lim

x→0

(sinx)2

x2(1 + cosx)
=

lim
x→0

(

sinx

x

)2 (

1

1 + cosx

)

= 12 ·
1

2
=

1

2
.

(b) If you draw the graph near x = 0 with a graphing calculator or a computer, you are likely to get unusual
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results. Here’s the picture:
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The problem is that when x is close to 0, both x6 and x12 are very close to 0 — producing overflow and
underflow.

Actually, the limit is easy: Let y = x6. When x → 0, y → 0, so

lim
x→0

1− cos(x6)

x12
= lim

y→0

1− cos y

y2
=

1

2
.

For the last step, I used the result from the previous problem.

Example. Compute lim
x→0

tan 7x

tan 2x
.

If you set x = 0, you get
0

0
. Sigh.

I’ll see what I can tell from the graph:
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It looks as thought the limit is defined, and the picture suggests that it’s around 3.5.
First, I’ll break the tangents down into sines and cosines:

lim
x→0

tan 7x

tan 2x
= lim

x→0

sin 7x

cos 7x

cos 2x

sin 2x
.
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Next, I’ll force the
sin θ

θ
form to appear. Since I’ve got sin 7x and sin 2x, I need to make a 7x and a 2x

to match:

lim
x→0

sin 7x

cos 7x

cos 2x

sin 2x
=

7

2
lim
x→0

sin 7x

7x

2x

sin 2x

cos 2x

cos 7x
.

Now take the limit of each piece:

sin 7x

7x
→ 1,

2x

sin 2x
→ 1,

cos 2x

cos 7x
→

1

1
= 1.

The limit of a product is the product of the limits:

7

2
lim
x→0

sin 7x

7x

2x

sin 2x

cos 2x

cos 7x
=

7

2
· 1 · 1 · 1 =

7

2
= 3.5.

Derivatives of trig functions.

I’ll begin with a lemma I’ll need to derive the derivative formulas.

Lemma. lim
h→0

cosh− 1

h
= 0.

Proof.

lim
h→0

cosh− 1

h
= lim

h→0

cosh− 1

h

cosh+ 1

cosh+ 1
= lim

h→0

(cosh)2 − 1

h(cosh+ 1)
= lim

h→0

−
(sinh)2

h(cosh+ 1)
=

−

(

lim
h→0

sinh

h

)(

lim
h→0

sinh

cosh+ 1

)

= −1 ·
0

1 + 1
= (−1) · 0 = 0.

Proposition.

(a)
d

dx
sinx = cosx.

(b)
d

dx
cosx = − sinx.

(c)
d

dx
tanx = (secx)2.

(d)
d

dx
secx = secx tanx.

(e)
d

dx
cotx = −(cscx)2.

(f)
d

dx
cscx = − cscx cotx.

Proof. To prove (a), I’ll use the sine limit formula

lim
θ→0

sin θ

θ
= 1.

I’ll also need the angle addition formula for sine:

sin(A+B) = sinA cosB + sinB cosA.
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Let f(x) = sinx. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

sin(x+ h)− sinx

h
= lim

h→0

sinx cosh+ sinh cosx− sinx

h
=

(sinx) · lim
h→0

cosh− 1

h
+ (cosx) lim

h→0

sinh

h
= (sinx) · lim

h→0

cosh− 1

h
+ cosx.

The first term goes to 0 by the preceding lemma. Hence,

f ′(x) = cosx.

That is,
d

dx
sinx = cosx.

To derive the formula for cosine, I’ll use the angle addition formula for cosine:

cos(A+B) = cosA cosB − sinA sinB.

Let f(x) = cosx. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

cos(x+ h)− cosx

h
= lim

h→0

cosx cosh− sinx sinh− cosx

h
=

lim
h→0

(cosx cosh− cosx)− (sinx sinh)

h
= lim

h→0

(cosx)(cosh− 1)− (sinx sinh)

h
=

lim
h→0

(cosx)
cosh− 1

h
− (sinx) lim

h→0

sinh

h
= (cosx) · 0− (sinx) · 1 = − sinx.

I won’t do the proofs for the remaining trig functions. The idea is to write

tanx =
sinx

cosx
, cotx =

cosx

sinx
, secx =

1

cosx
= (cosx)−1, cscx =

1

sinx
= (sinx)−1.

Then you can use the derivative formulas for sine and cosine together with the quotient rule or the chain
rule to compute the derivatives.

As an example, I’ll derive the formula for cosecant:

d

dx
cscx =

d

dx

1

sinx
= −(sinx)−2 · cosx = −

1

sinx
·
cosx

sinx
= − cscx cotx.

Example. Compute the following derivatives.

(a)
d

dx

(

3x3 + cosx
)

.

(b)
d

dx
(x sinx).

(c)
d

dx

4 sinx+ 3x

5 + 2 cosx
.

(d)
d

dx
(x+ sinx)(x2 − tanx).

(e)
d

dx

2− secx

3 + 4 cscx
.
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(a)
d

dx

(

3x3 + cosx
)

= 9x2 − sinx.

(b)
d

dx
(x sinx) = (x)(cosx) + (sinx)(1) = x cosx+ sinx.

(c)
d

dx

4 sinx+ 3x

5 + 2 cosx
=

(5 + 2 cosx)(4 cosx+ 3)− (4 sinx+ 3x)(−2 sinx)

(5 + 2 cosx)2
.

(d)
d

dx
(x+ sinx)(x2 − tanx) = (x+ sinx)(2x− (secx)2) + (x2 − tanx)(1− cosx).

(e)
d

dx

2− secx

3 + 4 cscx
=

(3 + 4 cscx)(− secx tanx)− (2− secx)(−4 cscx cotx)

(3 + 4 cscx)2
.

Example. For what values of x does f(x) = x+ sinx have a horizontal tangent?

f ′(x) = 1 + cosx.

So f ′(x) = 0 where cosx = −1. In the range 0 ≤ x ≤ 2π, this happens at x = π. So f ′(x) = 0 for
x = π + 2nπ, where n is any integer.
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