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Arc Length

Suppose a curve is given by continuous functions

x = f(t), y = g(t), a ≤≤ b.

Partition the interval [a, b]:

P : a = t0 < t1 < t2 < · · · < tn = b.

(Note that different partitions may use different numbers of points, as well as different points.)
Consider a subinterval [tk, tk+1]. The corresponding points on the curve are

(xk, yk) = (f(tk), g(tk)) and (xk+1, yk+1) = (f(tk+1), g(tk+1)).

The length of the segment from (xk, yk) to (xk+1, yk+1) is

∆sk =
√

(xk − xk+1)2 + (yk − yk+1)2.

It approximates the length of the curve from (xk, yk) to (xk+1, yk+1).
For the partition P , the total length of the segments is

L(P ) =
n−1
∑

k=0

∆sk.

Definition. A curve is rectifiable if there is a number M such that for every partition of the interval [a, b],

L(P ) < M.

If a curve is rectifiable, we can define the length of the curve as the least upper bound of L(P ) taken
over all the partitions of the interval.

While you can imagine approximating the length of a curve by taking partitions with larger and larger
numbers of points, this definition doesn’t give a way of computing the exact length.

If the curve is “well-behaved”, we can compute the exact length as follows. Suppose the functions f(t)
and g(t) are differentiable and have continuous derivatives. Apply the Mean Value Theorem to f and to g

on a typical subinterval [tk, tk+1]. Then there are numbers pk and qk such that

xk+1 − xk = f ′(pk)(tk+1 − tk) and yk+1 − yk = g′(qk)(tk+1 − tk).

Plugging these into the equation for ∆sk above, I get

∆sk =
√

(xk − xk+1)2 + (yk − yk+1)2

=
√

f ′(pk)2(tk+1 − tk)2 + g′(qk)2(tk+1 − tk)2

=
√

f ′(pk)2 + g′(qk)2(tk+1 − tk)

=
√

f ′(pk)2 + g′(qk)2∆tk

1



I obtain the sum

L(P ) =
n−1
∑

k=0

∆sk =
n−1
∑

k=0

√

f ′(pk)2 + g′(qk)2∆tk.

I want to take the limit as the number of subintervals in the partition becomes infinite (or as the length
of the subintervals goes to 0). There is a technical point here, and that is that I have two varying quantities
pk and qk, so this is not an ordinary Riemann sum. In fact, it’s possible to show (using a result called Bliss’s
Theorem) that the Riemann sum produces the expected definite integral:

L =

∫ b

a

√

f ′(t)2 + g′(t)2 dt = lim
∆t→0

n−1
∑

k=0

√

f ′(pk)2 + g′(qk)2∆tk.

This gives the length of the curve. You can also write this in the form

L =

∫ b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

dt.

If the curve is given in the form y = g(x), we can think of it as parametrized by x (so t becomes x).

Since
dx

dx
= 1, the formula is

L =

∫ b

a

√

1 +

(

dy

dx

)2

dx.

Likewise, if the curve is given in the form x = f(y), the formula is

L =

∫ b

a

√

1 +

(

dx

dy

)2

dy.

Example. Find the length of y =
1

2
x2 for 0 ≤ x ≤ 1.
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dy

dx
= x, so

(

dy

dx

)2

+ 1 = x2 + 1.

The length is

L =

∫ 1

0

√

x2 + 1 dx =

[

1

2
x
√

x2 + 1 +
1

2
ln |x+

√

x2 + 1|
]1

0

=

√
2

2
+

1

2
ln(1 +

√
2) = 1.14779 . . . .

Here’s the work for the integral:

∫

√

x2 + 1 dx =

∫

√

(tan θ)2 + 1(sec θ)2 dθ =

∫

(sec θ)3 dθ =

2



[

x = tan θ, dx = (sec θ)2 dθ
]

1

2
sec θ tan θ +

1

2
ln | sec θ + tan θ|+ C =

1

2
x
√

x2 + 1 +
1

2
ln |x+

√

x2 + 1|+ C.

Example. Find the length of the curve

x = et cos 2t, y = et sin 2t, 0 ≤ t ≤ π

4
.
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dx

dt
= −2et sin 2t+ et cos 2t,

dy

dt
= 2et cos 2t+ et sin 2t,

(

dx

dt

)2

+

(

dy

dt

)2

= (−2et sin 2t+ et cos 2t)2 + (2et cos 2t+ et sin 2t)2 =

4e2t(sin 2t)2 − 4e2t sin 2t cos 2t+ e2t(cos 2t)2 + 4e2t(cos 2t)2 + 4e2t sin 2t cos 2t+ e2t(sin 2t)2 =

4e2t
[

(sin 2t)2 + (cos 2t)2
]

+ e2t
[

(sin 2t)2 + (cos 2t)2
]

= 4e2t · 1 + e2t · 1 = 5e2t.

Hence,
√

(

dx

dt

)2

+

(

dy

dt

)2

=
√
5e2t =

√
5et.

The length is

L =

∫ π/4

0

√
5 et dt =

√
5
[

et
]π/4

0
=

√
5(eπ/4 − 1) = 2.66825 . . . .

Example. Find the length of y =
x4

16
+

1

2x2
for 1 ≤ x ≤ 2.

1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

3



dy

dx
=

x3

4
− 1

x3
, so

(

dy

dx

)2

=

(

x3

4
− 1

x3

)2

=
x6

16
− 1

2
+

1

x6
.

The next step is the algebraic trick in this problem:

(

dy

dx

)2

+ 1 =

(

x6

16
− 1

2
+

1

x6

)

+ 1 =
x6

16
+

1

2
+

1

x6
=

(

x3

4
+

1

x3

)2

.

The idea is that I saw when I found

(

dy

dx

)2

that

x6

16
− 1

2
+

1

x6
=

(

x3

4
− 1

x3

)2

.

Therefore,

x6

16
+

1

2
+

1

x6
=

(

x3

4
+

1

x3

)2

.

The only difference is in the sign of the
1

2
. Since the first expression is the square of a binomial with a

“−”, the second expression must be the square of the same binomial with a “+”.
Thus,

√

(

dy

dx

)2

+ 1 =

√

(

x3

4
+

1

x3

)2

=
x3

4
+

1

x3
.

The length is

L =

∫ 2

1

(

x3

4
+

1

x3

)

dx =

[

x4

16
− 1

2x2

]2

1

=
7

16
= 0.4375.
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