Arc Length

Suppose a curve is given by continuous functions

$$
x=f(t), \quad y=g(t), \quad a \leq \leq b
$$

Partition the interval $[a, b]$:

$$
P: a=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=b
$$

(Note that different partitions may use different numbers of points, as well as different points.) Consider a subinterval $\left[t_{k}, t_{k+1}\right]$. The corresponding points on the curve are

$$
\left(x_{k}, y_{k}\right)=\left(f\left(t_{k}\right), g\left(t_{k}\right)\right) \quad \text { and } \quad\left(x_{k+1}, y_{k+1}\right)=\left(f\left(t_{k+1}\right), g\left(t_{k+1}\right)\right)
$$

The length of the segment from $\left(x_{k}, y_{k}\right)$ to $\left(x_{k+1}, y_{k+1}\right)$ is

$$
\Delta s_{k}=\sqrt{\left(x_{k}-x_{k+1}\right)^{2}+\left(y_{k}-y_{k+1}\right)^{2}}
$$

It approximates the length of the curve from $\left(x_{k}, y_{k}\right)$ to $\left(x_{k+1}, y_{k+1}\right)$.
For the partition P, the total length of the segments is

$$
L(P)=\sum_{k=0}^{n-1} \Delta s_{k}
$$

Definition. A curve is rectifiable if there is a number M such that for every partition of the interval $[a, b]$,

$$
L(P)<M
$$

If a curve is rectifiable, we can define the length of the curve as the least upper bound of $L(P)$ taken over all the partitions of the interval.

While you can imagine approximating the length of a curve by taking partitions with larger and larger numbers of points, this definition doesn't give a way of computing the exact length.

If the curve is "well-behaved", we can compute the exact length as follows. Suppose the functions $f(t)$ and $g(t)$ are differentiable and have continuous derivatives. Apply the Mean Value Theorem to f and to g on a typical subinterval $\left[t_{k}, t_{k+1}\right]$. Then there are numbers p_{k} and q_{k} such that

$$
x_{k+1}-x_{k}=f^{\prime}\left(p_{k}\right)\left(t_{k+1}-t_{k}\right) \quad \text { and } \quad y_{k+1}-y_{k}=g^{\prime}\left(q_{k}\right)\left(t_{k+1}-t_{k}\right) .
$$

Plugging these into the equation for Δs_{k} above, I get

$$
\begin{aligned}
\Delta s_{k} & =\sqrt{\left(x_{k}-x_{k+1}\right)^{2}+\left(y_{k}-y_{k+1}\right)^{2}} \\
& =\sqrt{f^{\prime}\left(p_{k}\right)^{2}\left(t_{k+1}-t_{k}\right)^{2}+g^{\prime}\left(q_{k}\right)^{2}\left(t_{k+1}-t_{k}\right)^{2}} \\
& =\sqrt{f^{\prime}\left(p_{k}\right)^{2}+g^{\prime}\left(q_{k}\right)^{2}}\left(t_{k+1}-t_{k}\right) \\
& =\sqrt{f^{\prime}\left(p_{k}\right)^{2}+g^{\prime}\left(q_{k}\right)^{2}} \Delta t_{k}
\end{aligned}
$$

I obtain the sum

$$
L(P)=\sum_{k=0}^{n-1} \Delta s_{k}=\sum_{k=0}^{n-1} \sqrt{f^{\prime}\left(p_{k}\right)^{2}+g^{\prime}\left(q_{k}\right)^{2}} \Delta t_{k}
$$

I want to take the limit as the number of subintervals in the partition becomes infinite (or as the length of the subintervals goes to 0). There is a technical point here, and that is that I have two varying quantities p_{k} and q_{k}, so this is not an ordinary Riemann sum. In fact, it's possible to show (using a result called Bliss's Theorem) that the Riemann sum produces the expected definite integral:

$$
L=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t=\lim _{\Delta t \rightarrow 0} \sum_{k=0}^{n-1} \sqrt{f^{\prime}\left(p_{k}\right)^{2}+g^{\prime}\left(q_{k}\right)^{2}} \Delta t_{k}
$$

This gives the length of the curve. You can also write this in the form

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

If the curve is given in the form $y=g(x)$, we can think of it as parametrized by x (so t becomes x). Since $\frac{d x}{d x}=1$, the formula is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Likewise, if the curve is given in the form $x=f(y)$, the formula is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Example. Find the length of $y=\frac{1}{2} x^{2}$ for $0 \leq x \leq 1$.

The length is

$$
L=\int_{0}^{1} \sqrt{x^{2}+1} d x=\left[\frac{1}{2} x \sqrt{x^{2}+1}+\frac{1}{2} \ln \left|x+\sqrt{x^{2}+1}\right|\right]_{0}^{1}=\frac{\sqrt{2}}{2}+\frac{1}{2} \ln (1+\sqrt{2})=1.14779 \ldots
$$

Here's the work for the integral:

$$
\int \sqrt{x^{2}+1} d x=\int \sqrt{(\tan \theta)^{2}+1}(\sec \theta)^{2} d \theta=\int(\sec \theta)^{3} d \theta=
$$

$$
\begin{gathered}
{\left[x=\tan \theta, \quad d x=(\sec \theta)^{2} d \theta\right]} \\
\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta|+C=\frac{1}{2} x \sqrt{x^{2}+1}+\frac{1}{2} \ln \left|x+\sqrt{x^{2}+1}\right|+C .
\end{gathered}
$$

Example. Find the length of the curve

$$
x=e^{t} \cos 2 t, \quad y=e^{t} \sin 2 t, \quad 0 \leq t \leq \frac{\pi}{4}
$$

$$
\begin{gathered}
\frac{d x}{d t}=-2 e^{t} \sin 2 t+e^{t} \cos 2 t, \quad \frac{d y}{d t}=2 e^{t} \cos 2 t+e^{t} \sin 2 t \\
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(-2 e^{t} \sin 2 t+e^{t} \cos 2 t\right)^{2}+\left(2 e^{t} \cos 2 t+e^{t} \sin 2 t\right)^{2}= \\
4 e^{2 t}(\sin 2 t)^{2}-4 e^{2 t} \sin 2 t \cos 2 t+e^{2 t}(\cos 2 t)^{2}+4 e^{2 t}(\cos 2 t)^{2}+4 e^{2 t} \sin 2 t \cos 2 t+e^{2 t}(\sin 2 t)^{2}= \\
4 e^{2 t}\left[(\sin 2 t)^{2}+(\cos 2 t)^{2}\right]+e^{2 t}\left[(\sin 2 t)^{2}+(\cos 2 t)^{2}\right]=4 e^{2 t} \cdot 1+e^{2 t} \cdot 1=5 e^{2 t}
\end{gathered}
$$

Hence,

$$
\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\sqrt{5 e^{2 t}}=\sqrt{5} e^{t}
$$

The length is

$$
L=\int_{0}^{\pi / 4} \sqrt{5} e^{t} d t=\sqrt{5}\left[e^{t}\right]_{0}^{\pi / 4}=\sqrt{5}\left(e^{\pi / 4}-1\right)=2.66825 \ldots
$$

Example. Find the length of $y=\frac{x^{4}}{16}+\frac{1}{2 x^{2}}$ for $1 \leq x \leq 2$.

$$
\frac{d y}{d x}=\frac{x^{3}}{4}-\frac{1}{x^{3}}, \quad \text { so } \quad\left(\frac{d y}{d x}\right)^{2}=\left(\frac{x^{3}}{4}-\frac{1}{x^{3}}\right)^{2}=\frac{x^{6}}{16}-\frac{1}{2}+\frac{1}{x^{6}}
$$

The next step is the algebraic trick in this problem:

$$
\left(\frac{d y}{d x}\right)^{2}+1=\left(\frac{x^{6}}{16}-\frac{1}{2}+\frac{1}{x^{6}}\right)+1=\frac{x^{6}}{16}+\frac{1}{2}+\frac{1}{x^{6}}=\left(\frac{x^{3}}{4}+\frac{1}{x^{3}}\right)^{2}
$$

The idea is that I saw when I found $\left(\frac{d y}{d x}\right)^{2}$ that

$$
\frac{x^{6}}{16}-\frac{1}{2}+\frac{1}{x^{6}}=\left(\frac{x^{3}}{4}-\frac{1}{x^{3}}\right)^{2}
$$

Therefore,

$$
\frac{x^{6}}{16}+\frac{1}{2}+\frac{1}{x^{6}}=\left(\frac{x^{3}}{4}+\frac{1}{x^{3}}\right)^{2}
$$

The only difference is in the sign of the $\frac{1}{2}$. Since the first expression is the square of a binomial with a "-", the second expression must be the square of the same binomial with a "+".

Thus,

$$
\sqrt{\left(\frac{d y}{d x}\right)^{2}+1}=\sqrt{\left(\frac{x^{3}}{4}+\frac{1}{x^{3}}\right)^{2}}=\frac{x^{3}}{4}+\frac{1}{x^{3}}
$$

The length is

$$
L=\int_{1}^{2}\left(\frac{x^{3}}{4}+\frac{1}{x^{3}}\right) d x=\left[\frac{x^{4}}{16}-\frac{1}{2 x^{2}}\right]_{1}^{2}=\frac{7}{16}=0.4375
$$

