Direct and Limit Comparison

You can often tell that a series converges or diverges by comparing it to a known series. I'll look first at situations where you can establish an *inequality* between the terms of two series.

Theorem. (Direct Comparison) Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, be series with positive terms.

(a) If
$$a_k \ge b_k$$
 for all k and $\sum_{k=1}^{\infty} a_k$ converges, then $\sum_{k=1}^{\infty} b_k$ converges.

(b) If
$$a_k \ge b_k$$
 for all k and $\sum_{k=1}^{\infty} b_k$ diverges, then $\sum_{k=1}^{\infty} a_k$ diverges.

Proof. Let's look at the proof of (a). I know that $\sum_{k=1}^{\infty} a_k$ converges; say $\sum_{k=1}^{\infty} a_k = S$.

The partial sums of $\sum_{k=1}^{\infty} a_k$ increase, since the series has positive terms. Therefore, the partial sums are bounded above by S.

Since $a_k \ge b_k$ for all k, the partial sums of $\sum_{k=1}^{\infty} a_k$ are greater than or equal to the partial sums of $\sum_{k=1}^{\infty} b_k$:

$$a_1 + a_2 + \dots + a_n \ge b_1 + b_2 + \dots + b_n.$$

Hence, S is an upper bound for the partial sums of $\sum_{k=1}^{\infty} b_k$. Since those partial sums form an increasing

sequence that is bounded above, they must have a limit. This means that $\sum_{k=1}^{\infty} b_k$ converges.

A similar idea works for (b). In that case, the a_k partial sums are always bigger than the b_k partial sums, but the b_k partial sums go to ∞ . Hence, the a_k partial sums go to ∞ as well. \Box

In the problems that follow, I'll often have to establish inequalities involving fractions. I need to know how a fraction changes if its top or its bottom is made bigger or smaller. The following table summarizes the ideas:

	top bigger	top smaller	bottom bigger	bottom smaller
fraction becomes	bigger	smaller	smaller	bigger

For example, take the fraction $\frac{2}{3}$. If I change the top from "2" to "3", I make the top bigger. The fraction changes from $\frac{2}{3}$ to $\frac{3}{3}$, so the fraction has become bigger. If I change the bottom from "3" to "2", I make the bottom smaller. The fraction changes from $\frac{2}{3}$ to $\frac{2}{3}$, so the fraction has become bigger.

Example. Determine whether
$$\sum_{k=1}^{\infty} \frac{1}{k^3 + k + 7}$$
 converges or diverges.

The series has positive terms. In fact, I could use the Integral Test, but who would want to integrate $\frac{1}{x^3 + x + 7}$?

Instead, note that when k is large, the k^3 term should dominate. How does $\frac{1}{k^3 + k + 7}$ compare to $\frac{1}{k^3}$? Well, if you make the bottom *smaller*, the fraction gets *bigger*:

$$\frac{1}{k^3 + k + 7} < \frac{1}{k^3}.$$

Now $\sum_{k=1}^{\infty} \frac{1}{k^3}$ is a *p*-series with $p = 3$, so it converges. Hence, $\sum_{k=1}^{\infty} \frac{1}{k^3 + k + 7}$ converges by comparison.

Example. Determine whether $\sum_{n=3}^{\infty} \frac{6n^2 + 1}{5n^3 - 2}$ converges or diverges.

When n is large, the term $\frac{6n^2+1}{5n^3-2}$ is approximately $\frac{6n^2}{5n^3} = \frac{6}{5}\frac{1}{n}$. This is a term of the harmonic series, which diverges. So I suspect my series diverges.

I have

$$\frac{6n^2+1}{5n^3-2} > \frac{6n^2}{5n^3-2} > \frac{6n^2}{5n^3} = \frac{6}{5}\frac{1}{n}$$

I made the top smaller, then I made the bottom bigger; both cause the fraction to become smaller. $\sum_{n=3}^{\infty} \frac{6}{5} \frac{1}{n} \text{ is } \frac{6}{5} \text{ times the harmonic series (minus the } n = 1 \text{ and } n = 2 \text{ terms), so it diverges. Hence,}$ $\sum_{n=3}^{\infty} \frac{6n^2 + 1}{5n^3 - 2} \text{ diverges by Direct Comparison.} \quad \Box$

Example. Determine whether $\sum_{n=1}^{\infty} \frac{5\sin n + 11}{6^n + 4}$ converges or diverges.

Since the top is bounded and the bottom is approximately 6^n for large n, the series terms "look like" $\frac{1}{6^n}$, which is the general term of a convergent geometric series. So I think my series converges. I'll use a familiar fact from trigonometry, then do algebra to "build up" the term of my series in the

I'll use a familiar fact from trigonometry, then do algebra to "build up" the term of my series in the inequality.

$$-1 \le \sin n \le 1$$

$$-5 \le 5 \sin n \le 5$$

$$6 \le 5 \sin n + 11 \le 16$$

$$\frac{6}{6^n + 4} \le \frac{5 \sin n + 11}{6^n + 4} \le \frac{16}{6^n + 4} < \frac{16}{6^n}$$

The series $\sum_{n=1}^{\infty} \frac{16}{6^n}$ is geometric with ratio $\frac{1}{6}$, so it converges. Hence, the original series converges by direct comparison. \Box

Example. Determine whether $\sum_{k=1}^{\infty} \frac{\arctan k}{k^3}$ converges or diverges.

The series has positive terms. Since $\arctan k \leq \frac{\pi}{2}$,

$$\frac{\arctan k}{k^3} \le \frac{\pi}{2} \frac{1}{k^3}$$

 $\sum_{k=1}^{\infty} \frac{\pi}{2k^3} \text{ converges, because it's a } p \text{-series with } p = 3 > 1. \text{ Therefore, } \sum_{k=1}^{\infty} \frac{\arctan k}{k^3} \text{ converges by direct}$ comparison. \Box

Example. Determine whether
$$\sum_{k=1}^{\infty} \frac{\sqrt{k+3}}{k\sqrt{k+2}}$$
 converges or diverges

If you make the top smaller, the fraction gets smaller:

$$\frac{\sqrt{k+3}}{k\sqrt{k+2}} > \frac{\sqrt{k+2}}{k\sqrt{k+2}} = \frac{1}{k}.$$

Notice how I avoided changing k + 3 to k; I changed it to something which cancelled the radical on the bottom.

Now $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges since it's harmonic. So $\sum_{k=1}^{\infty} \frac{\sqrt{k+3}}{k\sqrt{k+2}}$ diverges, by comparison. \Box

Note that Direct Comparison won't work if the inequalities go the wrong way. For example, consider $\sum_{k=2}^{\infty} \frac{1}{k^2 - 2}$. I'd like to compare this to $\sum_{k=1}^{\infty} \frac{1}{k^2}$, but if I make the bottom *bigger* (by adding 2), the fraction gets smaller:

$$\frac{1}{k^2 - 2} > \frac{1}{k^2}.$$

It's true that $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is a convergent *p*-series (p=2), but it's *smaller* than the given series. I can't draw a conclusion this way.

Nevertheless, $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is "close to" the given series in some sense. Limit Comparison will make precise

the idea that one series is "close to" another, without having to worry about inequalities.

Theorem. (Limit Comparison) Let $\sum_{k=1}^{\infty} a_k$ be a positive term series. Let $\sum_{k=1}^{\infty} b_k$ be a positive term series whose behavior is known.

Consider the limiting ratio

$$\lim_{k\to\infty}\frac{a_k}{b_k}$$

(a) If the limit is a *finite positive number*, then the two series behave in the same way:

(c) If the limit is $+\infty$ and $\sum_{k=1}^{\infty} b_k$ diverges, then $\sum_{k=1}^{\infty} a_k$ diverges.

The first case is the most important one, and the one I'll usually use. Fortunately, it will work even if you accidentally write $\frac{b_k}{a_k}$ instead of $\frac{a_k}{b_k}$. The second and third cases require that you get the fraction "right side up". The phrase "finite positive number" means that in case (a), the limit should not be 0 or ∞ .

Proof. I'll sketch a proof in the first part of case (a). Suppose the limit is a finite positive number:

$$\lim_{k \to \infty} \frac{a_k}{b_k} = L > 0$$

Suppose $\sum_{k=1}^{\infty} b_k$ converges. Then there is a number *n* such that if $k \ge n$,

$$\frac{a_k}{b_k} < L+1$$

So for $k \ge n$,

$$a_k < (L+1)b_k.$$

Apply Direct Comparison to the series $\sum_{k=n}^{\infty} a_k$ and $\sum_{k=n}^{\infty} (L+1)b_k$. The series $\sum_{k=n}^{\infty} (L+1)b_k$ converges, because $\sum_{k=1}^{\infty} b_k$ converges. Hence, $\sum_{k=n}^{\infty} a_k$ converges by Direct Comparison.

Therefore, $\sum_{k=1}^{\infty} a_k$ converges as well. \Box

Example. Determine whether $\sum_{k=1}^{\infty} \frac{4k^2 + k + 9}{7k^3 + 13}$ converges or diverges.

The series has positive terms.

When k is large, the top and bottom are dominated by the terms with the biggest powers:

$$\frac{4k^2 + k + 9}{7k^3 + 13} \approx \frac{4k^2}{7k^3} = \frac{4}{7} \cdot \frac{1}{k}.$$

Compute the limiting ratio:

$$\lim_{k \to \infty} \frac{\frac{4k^2 + k + 9}{7k^3 + 13}}{\frac{4}{7} \cdot \frac{1}{k}} = \frac{7}{4} \cdot \lim_{k \to \infty} \frac{4k^3 + k^2 + 9k}{7k^3 + 13} = \frac{7}{4} \cdot \frac{4}{7} = 1.$$

The limiting ratio is 1, a finite positive number. The series $\sum_{k=1}^{\infty} \frac{4}{7} \cdot \frac{1}{k}$ diverges, because it is harmonic. Hence, the series $\sum_{k=1}^{\infty} \frac{4k^2 + k + 9}{7k^3 + 13}$ diverges by Limit Comparison. \Box

Example. Determine whether $\sum_{k=2}^{\infty} \frac{4^k + 5}{7^k - 42}$ converges or diverges.

The series has positive terms. When k is large,

$$\frac{4^k+5}{7^k-42} \approx \frac{4^k}{7^k}$$

Compute the limiting ratio:

$$\lim_{k \to \infty} \frac{\frac{4^k + 5}{7^k - 42}}{\frac{4^k}{7^k}} = \lim_{k \to \infty} \frac{1 + \frac{5}{4^k}}{1 - \frac{42}{7^k}} = 1.$$

The limiting ratio is 1, a finite positive number. The series $\sum_{k=1}^{\infty} \frac{4^k}{7^k}$ is a convergent geometric series (since

 $\frac{4}{7} < 1$). Therefore, $\sum_{k=2}^{\infty} \frac{4^k + 5}{7^k - 42}$ converges, by Limit Comparison.