Infinite Series - Review

Example. Does the series $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}+1.01^{n}\right)$ converge or diverge?
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a p-series with $p=2>1$, so it converges. $\sum_{n=1}^{\infty} 1.01^{n}$ is a geometric series with $r=1.01>1$, so it diverges.

Hence, the sum of the two series diverges. $\quad \square$

Example. Determine whether the series converges or diverges. If it converges, find its sum.

$$
\frac{7}{16}-\frac{7}{64}+\frac{7}{256}-\cdots+(-1)^{n}(7)\left(\frac{1}{4}\right)^{n}+\cdots
$$

The series is geometric with ratio $-\frac{1}{4}$, so it converges. The sum is

$$
\begin{gathered}
\frac{7}{16}-\frac{7}{64}+\frac{7}{256}-\cdots+(-1)^{n}\left(\frac{1}{7}\right)\left(\frac{1}{4}\right)^{n}+\cdots=\frac{7}{16}\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}+\cdots\right)= \\
\frac{7}{16} \cdot \frac{1}{1-\left(-\frac{1}{4}\right)}=\frac{7}{16} \cdot \frac{4}{5}=\frac{7}{20}
\end{gathered}
$$

Example. Does the series $\sum_{n=1}^{\infty} \frac{\sqrt{e^{n}}}{\sqrt[3]{\pi^{n}}}$ converge or diverge?

$$
\sum_{n=1}^{\infty} \frac{\sqrt{e^{n}}}{\sqrt[3]{\pi^{n}}}=\sum_{n=1}^{\infty}\left(\frac{\sqrt{e}}{\sqrt[3]{\pi}}\right)^{n}
$$

The series is geometric with ratio $\frac{\sqrt{e}}{\sqrt[3]{\pi}} \approx 1.12572>1$. Therefore, the series diverges. \square
Example. Does the series $\sum_{n=1}^{\infty} \frac{4 n^{3}+5}{7 n^{2}-11 n^{3}}$ converge or diverge?

$$
\lim _{n \rightarrow \infty} \frac{4 n^{3}+5}{7 n^{2}-11 n^{3}}=-\frac{4}{11} \neq 0
$$

The series diverges by the Zero Limit Test. $\quad \square$

Example. Does the series $\sum_{n=1}^{\infty} \tan ^{-1} \frac{42^{n}}{41^{n}}$ converge or diverge?
$\frac{42^{n}}{41^{n}}$ is a geometric sequence with ratio $\frac{42}{41}>1$, so $\frac{42^{n}}{41^{n}} \rightarrow \infty$ as $n \rightarrow \infty$. Therefore,

$$
\lim _{n \rightarrow \infty} \tan ^{-1} \frac{42^{n}}{41^{n}}=\frac{\pi}{2} \neq 0
$$

Hence, the series diverges, by the Zero Limit Test.

Example. Does the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converge or diverge?
The terms are positive. The function $f(x)=\frac{1}{x(\ln x)^{2}}$ is continuous for $x \geq 2$. The derivative is

$$
f^{\prime}(x)=-\frac{1}{x^{2}(\ln x)^{2}}-\frac{2}{x^{2}(\ln x)^{3}}
$$

I have $f^{\prime}(x)<0$ for $x \geq 2$. Thus, the terms of the series decrease. The hypotheses of the Integral Test are satisfied.

Compute the integral:

$$
\begin{gathered}
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x(\ln x)^{2}} d x=\lim _{b \rightarrow \infty} \int_{\ln 2}^{\ln b} \frac{1}{x \cdot u^{2}} \cdot x d u=\lim _{b \rightarrow \infty} \int_{\ln 2}^{\ln b} \frac{d u}{u^{2}}= \\
{\left[u=\ln x, \quad d u=\frac{d x}{x}, \quad d x=x d u ; \quad x=2, \quad u=\ln 2 ; \quad x=b, \quad u=\ln b\right]} \\
\lim _{b \rightarrow \infty}\left[-\frac{1}{u}\right]_{\ln 2}^{\ln b}=\lim _{b \rightarrow \infty}\left(-\frac{1}{\ln b}+\frac{1}{\ln 2}\right)=\frac{1}{\ln 2} .
\end{gathered}
$$

The integral converges, so the series converges, by the Integral Test.

Example. Does the series $\sum_{n=1}^{\infty} \frac{1+e^{-n^{3}}}{n}$ converge or diverge?
Notice that as $n \rightarrow \infty, 1+e^{-n^{3}}$ decreases to 1. Thus,

$$
1+e^{-n^{3}} \geq 1, \quad \text { so } \quad \frac{1+e^{-n^{3}}}{n} \geq \frac{1}{n}
$$

$\sum_{n=1}^{\infty} \frac{1}{n}$ is harmonic, so it diverges. Therefore, the original series diverges by direct comparison.

Example. Does the series $\sum_{n=1}^{\infty} \frac{\sqrt{n(n+1)}}{\sqrt{(n+2)(n+3)(n+4)}}$ converge or diverge?
For large $n, \frac{\sqrt{n(n+1)}}{\sqrt{(n+2)(n+3)(n+4)}} \approx \frac{\sqrt{n^{2}}}{\sqrt{n^{3}}}=\frac{1}{n^{1 / 2}}$. Do a Limit Comparison:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n(n+1)}}{\sqrt{(n+2)(n+3)(n+4)}}}{\frac{1}{n^{1 / 2}}} & =\lim _{n \rightarrow \infty} \frac{\sqrt{n(n+1)}}{\sqrt{(n+2)(n+3)(n+4)}} \frac{n^{1 / 2}}{1}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}(n+1)}}{\sqrt{(n+2)(n+3)(n+4)}}= \\
& \sqrt{\lim _{n \rightarrow \infty} \frac{n^{2}(n+1)}{(n+2)(n+3)(n+4)}}=\sqrt{1}=1 .
\end{aligned}
$$

The limit is a finite positive number. $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ diverges, because it's a p-series with $p=\frac{1}{2}<1$. Therefore, the original series diverges, by Limit Comparison. \quad]

Example. Does the series $\sum_{n=1}^{\infty} \frac{26^{n}(n!)^{3}}{(3 n)!}$ converge or diverge?
Apply the Ratio Test:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\frac{26^{n+1}((n+1)!)^{3}}{(3 n+3)!}}{\frac{26^{n}(n!)^{3}}{(3 n)!}}=\lim _{n \rightarrow \infty} \frac{26^{n+1}((n+1)!)^{3}}{(3 n+3)!} \cdot \frac{(3 n)!}{26^{n}(n!)^{3}}=\lim _{n \rightarrow \infty} \frac{26^{n+1}}{26^{n}} \cdot \frac{((n+1)!)^{3}}{(n!)^{3}} \cdot \frac{(3 n)!}{(3 n+3)!}= \\
\lim _{n \rightarrow \infty} 26 \cdot\left(\frac{(n+1)!}{n!}\right)^{3} \cdot \frac{(3 n)!}{(3 n+3)!}= \\
\lim _{n \rightarrow \infty} 26 \cdot\left(\frac{(1)(2) \cdots(n)(n+1)}{(1)(2) \cdots(n)}\right)^{3} \cdot \frac{(1)(2) \cdots(3 n)}{(1)(2) \cdots(3 n)(3 n+1)(3 n+2)(3 n+3)}= \\
\lim _{n \rightarrow \infty} 26 \cdot(n+1)^{3} \cdot \frac{1}{(3 n+1)(3 n+2)(3 n+3)}=\lim _{n \rightarrow \infty} \frac{26(n+1)^{3}}{(3 n+1)(3 n+2)(3 n+3)}=\frac{26}{27}<1 .
\end{gathered}
$$

Therefore, the series converges by the Ratio Test.

Example. Does the series $\sum_{n=1}^{\infty}\left(\sin ^{-1} \frac{1}{n}\right)^{n}$ converge or diverge?
Apply the Root Test:

$$
\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty}\left(\sin ^{-1} \frac{1}{n}\right)=\sin ^{-1} 0=0<1 .
$$

The series converges by the Root Test. $\quad \square$

Example. The series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{2}{\sqrt[3]{k+5}}$ converges by the Alternating Series Test.
Find the smallest value of n for which the partial sum $\sum_{k=1}^{n}(-1)^{k+1} \frac{2}{\sqrt[3]{k+5}}$ approximates the actual value of the sum to within 0.01 .

The error in using $\sum_{k=1}^{n}(-1)^{k+1} \frac{2}{\sqrt[3]{k+5}}$ to approximate the actual value of the sum is less than the
$(n+1)^{\text {st }}$ term in absolute value, so I want

$$
\begin{aligned}
\frac{2}{\sqrt[3]{(n+1)+5}} & <0.01 \\
\frac{2}{\sqrt[3]{n+6}} & <0.01 \\
2 & <0.01 \sqrt[3]{n+6} \\
200 & <\sqrt[3]{n+6} \\
8000000 & <n+6 \\
7999994 & <n
\end{aligned}
$$

The smallest value of n is $n=7999995$.

Example. Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5 n+2}$ converge absolutely, converge conditionally, or diverge?
Consider the absolute value series $\sum_{n=1}^{\infty} \frac{1}{5 n+2}$. By Limit Comparison,

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{5 n+2}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{5 n+2}=\frac{1}{5}
$$

The limit is a finite positive number. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, because it's harmonic. Therefore, $\sum_{n=1}^{\infty} \frac{1}{5 n+2}$ diverges by Limit Comparison.

Hence, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5 n+2}$ does not converge absolutely.
Consider the original series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5 n+2}$. It alternates, and if $f(n)=\frac{1}{5 n+2}$,

$$
f^{\prime}(n)=-\frac{5}{(5 n+2)^{2}}<0 \quad \text { for } \quad n \geq 1
$$

Hence, the terms decrease in absolute value. Finally,

$$
\lim _{n \rightarrow \infty} \frac{1}{5 n+2}=0
$$

By the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5 n+2}$ converges. Since it converges, but does not converge absolutely, it converges conditionally.

