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Integration by Parts

If u and v are functions of x, the Product Rule says that

d(uv)

dx
= u

dv

dx
+ v

du

dx
.

Integrate both sides:
∫

d(uv)

dx
dx =

∫

u
dv

dx
dx+

∫

v
du

dx
dx

uv =

∫

u dv +

∫

v du

∫

u dv = uv −
∫

v du

I’ve written “du” and “dv” as shorthand for “
du

dx
dx” and “

dv

dx
dx”.

This is the integration by parts formula. The integral on the left corresponds to the integral you’re
trying to do. Integration by parts replaces it with a term that doesn’t need integration (uv) and another
integral (

∫

v du). You’ll make progress if the new integral is easier to do than the old one.
I’m going to set up parts computations using tables; it is much easier to do repeated parts computations

this way than to use the standard u-dv-v-du approach. To see where the table comes from, start with the
parts equation:

∫

u dv = uv −
∫

v du.

Apply parts to the integral on the right, differentiating
du

dx
and integrating v. This gives

∫

u dv = uv −
[(

du

dx

)(
∫

v dx

)

−
∫

(
∫

v dx

)(

d2u

dx2

)

dx

]

=

uv −
(

du

dx

)(
∫

v dx

)

+

∫
(
∫

v dx

)(

d2u

dx2

)

dx.

If I apply parts yet again to the new integral on the right, I would get

∫

u dv = uv −
(

du

dx

)(
∫

v dx

)

+

(

d2u

dx2

)(
∫

(
∫

v dx

)

dx

)

−
∫

(
∫

(
∫

v dx

)

dx

)(

d3u

dx3

)

dx.

There’s a pattern here, and it’s captured by the following table:

d

dx

∫

dx

+ u dv

ց
− du

dx
v

ց
+

d2u

dx2

∫

v dx

ց
− d3u

dx3

∫
(
∫

v dx

)

dx

...
...

...
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To make the table, put alternating +’s and −’s in the left-hand column. Take the original integral and
break it into a u (second column) and a dv (third column). (I’ll discuss how you choose u and dv later.)
Differentiate repeatedly down the u-column, and integrate repeatedly down the dv-column. (You don’t write
down the dx; it’s kind of implicitly there in the third column, since you’re integrating.)

How do you get from the table to the messy equation above? Consider the first term on the right: uv.
You get that from the table by taking the + sign, taking the u next to it, and then moving “southeast” to
grab the v.

If you compare the table with the equation, you’ll see that you get the rest of the terms on the right
side by multiplying terms in the table according to the same pattern:

(+ or −) → (junk)
ց

(stuff)

The table continues downward indefinitely, so how do you stop? If you look at the last messy equation
above and compare it to the table, you can see how to stop: Just integrate all the terms the last row of the

table.
A formal proof that the table represents the algebra can be given using mathematical induction.
You’ll see that in many examples, the process will stop naturally when the derivative column entries

become 0.

Example. Compute

∫

x3e2x dx.

Integration by parts is often useful when you have a product of different kinds of functions in the same

integral. Here I have a power (x3) and and exponential (e2x), and this suggests using parts.
I have to “allocate” x3e2x dx between u and dv — remember that dx implicitly goes into dv. I will use

u = x3 and dv = e2x dx. Here’s the parts table:

d

dx

∫

dx

+ x3 e2x

ց
− 3x2

1

2
e2x

ց
+ 6x

1

4
e2x

ց
− 6

1

8
e2x

ց
+ 0 → 1

16
e2x

You can see the derivatives of x3 in one column and the integrals of e2x in another. Notice that when I
get a 0, I cut off the computation.

Therefore,
∫

x3e2x dx =
1

2
x3e2x − 3

4
x2e2x +

6

8
xe2x − 6

16
e2x +

∫

0 dx.

But

∫

0 dx is just 0 (up to an arbitrary constant), so I can write

∫

x3e2x dx =
1

2
x3e2x − 3

4
x2e2x +

6

8
xe2x − 6

16
e2x + C.
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Before leaving this problem, it’s worth thinking about why the x3 went into the derivative column and
the e2x went into the integral column. Here’s what would happen if the two were reversed:

d

dx

∫

dx

+ e2x x3

ց
− 2e2x

1

4
x4

ց
+ 4e2x

1

20
x5

...
...

...

This is bad for two reasons. First, I’m not getting that nice 0 I got by repeatedly differentiating x3.
Worse, the powers in the last column are getting bigger! This means that the problem is getting more

complicated, rather than less.
Here’s another attempt which doesn’t work:

d

dx

∫

dx

+ 1 x3e2x

ց
− 0

∫

x3e2x dx

I got a 0 this time, but how can I find the integral in the second row? — it’s the same as the original
integral! Putting the entire integrand into the integration column never works. On the other hand, you’ll see
in examples to follow that sometimes putting the entire integrand into the differentiation column does work.

Here’s a rule of thumb which reflects the preceding discussion. When you’re trying to decide which part
of an integral to put into the differentiation column, the order of preference is roughly

Logs Inverse trigs Powers Trig Exponentials

The acronym is “L-I-P-T-E”.

For example, suppose this rule is applied to

∫

x(lnx)2 dx.

You’d try the Log function (lnx)2 in the differentiation column ahead of the Power function x.

Or consider

∫

x2 sin 5x dx.

Here you’d try the Power function x2 in the differentiation column, because it has precedence over the
Trig function sin 5x.

The last two classes of functions — Trig functions and Exponential functions — are essentially “tied”,

so if you have an integral like

∫

e3x sin 2x dx, you can put either e3x or sin 2x in the derivative column.

(We’ll see, however, that this kind of integral requires a trick.)

Example. (a) Compute

∫

lnx dx.
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(b) Compute

∫

(lnx)2 dx.

(a)
d

dx

∫

dx

+ lnx 1
ց

− 1

x
→ x

∫

lnx dx = x lnx−
∫

dx = x lnx− x+ C.

(b)
d

dx

∫

dx

+ (lnx)2 1
ց

− 2 lnx

x
→ x

∫

(lnx)2 dx = x(lnx)2 − 2

∫

lnx dx = x(lnx)2 − 2(x lnx− x) + C.

(I computed

∫

lnx dx in part (a).)

Example. Compute

∫

x(x+ 4)50 dx.

First,
∫

(x+ 4)50 dx =

∫

u50 du =
1

51
u51 + C =

1

51
(x+ 4)51 + C.

[u = x+ 4, du = dx]

The same substitution shows that

∫

(x+ 4)51 dx =
1

52
(x+ 4)52 + C.

Now do the original integral by parts:

d

dx

∫

dx

+ x (x+ 4)50

ց
− 1

1

51
(x+ 4)51

ց
+ 0

1

2652
(x+ 4)52

∫

x(x+ 4)50 dx =
1

51
x(x+ 4)51 − 1

2652
(x+ 4)52 + C.

You can also do this integral using the substitution u = x+ 4.
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Example. Compute

∫

x2

(1− x)3
dx.

d

dx

∫

dx

+ x2
1

(1− x)3

ց
− 2x

1

2(1− x)2

ց
+ 2

1

2(1− x)
ց

+ 0 −1

2
ln |1− x|

∫

x2

(1− x)3
dx =

1

2

x2

(1− x)2
− x

1− x
− ln |1− x|+ C.

You could also do this integral using the substitution u = 1− x.

Parts can also be useful when the integrand is a single, unsimplifiable chunk. I already gave an example

of this earlier when I computed

∫

lnx dx. In the next example, you can’t do the integral of sin−1 x as-is,

and there’s no algebra you can do to change the integrand.

Example. Compute

∫

sin−1 x dx.

The idea is to use parts, putting sin−1 x in the derivative column so it goes away when it’s differentiated.
The derivative is an algebraic expression which “fits better” with the x you get in the integration column.

d

dx

∫

dx

+ sin−1 x 1
ց

− 1√
1− x2

→ x

Therefore,
∫

sin−1 x dx = x sin−1 x−
∫

x√
1− x2

dx.

I can do the new integral by substitution: Let u = 1− x2, so du = −2x dx, and dx =
du

−2x
:

x sin−1 x−
∫

x√
1− x2

dx = x sin−1 x−
∫

x√
u
· du

−2x
= x sin−1 x+

1

2

∫

du√
u
= x sin−1 x+

1

2
· 2
√
u+ C =

x sin−1 x+
√

1− x2 + C.

Example. Compute

∫ π/2

0

x sinx dx.
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If you do a definite integral using parts, compute the antiderivative using parts as usual, then slap on
the limits of integration at the end.

d

dx

∫

dx

+ x sinx
ց

− 1 − cosx
ց

+ 0 − sinx

Thus,
∫ π/2

0

x sinx dx = [−x cosx+ sinx]
π/2
0

= 1.

I noted earlier that a product of an exponential and a trig function would require a trick. The next
example illustrates this.

Example. Compute

∫

ex sin 2x dx.

d

dx

∫

dx

+ ex sin 2x
ց

− ex −1

2
cos 2x

ց
+ ex −1

4
sin 2x

∫

ex sin 2x dx = −1

2
ex cos 2x+

1

4
ex sin 2x− 1

4

∫

ex sin 2x dx.

What’s this? All that work and you get the original integral again!
Look at the equation as an equation to be solved for the original integral. It looks like this:

(original integral) = (some junk)− (original integral).

Move the copy of the original integral on the right back to the left and solve for it:

∫

ex sin 2x dx = −1

2
ex cos 2x+

1

4
ex sin 2x− 1

4

∫

ex sin 2x dx,

5

4

∫

ex sin 2x dx = −1

2
ex cos 2x+

1

4
ex sin 2x,

∫

ex sin 2x dx = −2

5
ex cos 2x+

1

5
ex sin 2x+ C.

Note: You can also do integrals like

∫

sin 5x cos 3x dx using this approach, though this integral could

also be done using a trig identity.
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