Parametric Equations of Curves

The parametric equations for a curve in the plane consists of a pair of equations

$$
x=f(t), \quad y=g(t), \quad a \leq t \leq b
$$

Each value of the parameter t gives values for x and y; the point (x, y) is the corresponding point on the curve.

For example, consider the parametric equations

$$
x=t^{2}+1, \quad y=t^{3}+t+1
$$

Here are some points (x, y) which result from plugging in some values for t :

t	x	y
-2	5	-9
-1	2	-1
0	1	1
1	2	3
2	5	11

The graph of the curve looks like this:

These are parametric equations for the circle $x^{2}+y^{2}=1$:

$$
x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq 2 \pi
$$

You can sometimes recover the $x-y$ equation of a parametric curve by eliminating t from the parametric equations. In this case,

$$
x^{2}+y^{2}=(\cos t)^{2}+(\sin t)^{2}=1
$$

Notice that the graph of a circle is not the graph of a function. Parametric equations can represent more general curves than function graphs can, which is one of their advantages.

These parametric equations represent a spiral:

$$
x=t \cos t, \quad y=t \sin t,
$$

This is also not the graph of a function $y=f(x)$.
Example. Find the $x-y$ equation for

$$
x=t^{3}+1, \quad y=t^{2}+t+1
$$

Solve the x-equation for t :

$$
\begin{aligned}
x & =t^{3}+1 \\
x-1 & =t^{3} \\
(x-1)^{1 / 3} & =t
\end{aligned}
$$

Plug this expression for t into the y-equation:

$$
y=(x-1)^{2 / 3}+(x-1)^{1 / 3}+1 .
$$

Example. Find the $x-y$ equation for

$$
x=5+2 \cos t, \quad y=-3+\sin t .
$$

Notice that

$$
\cos t=\frac{x-5}{2}, \quad \sin t=y+3
$$

So

$$
\left(\frac{x-5}{2}\right)^{2}+(y+3)^{2}=(\cos t)^{2}+(\sin t)^{2}=1 .
$$

This is the standard form for the equation of an ellipse.

In some cases, recovering an $x-y$ equation would be difficult or impossible. For example, these are the parametric equations for a hypocycloid of four cusps:

$$
x=3 \cos t+\cos 3 t, \quad y=3 \sin t-\sin 3 t, \quad 0 \leq t \leq 2 \pi
$$

In this case, it would be difficult to eliminate t to obtain an $x-y$ equation.
What about going the other way? If you have a curve (or an $x-y$ equation), how do you obtain parametric equations?

Note first that a given curve can be represent by infinitely many sets of parametric equations. For example, all of these sets of parametric equations represent the unit circle $x^{2}+y^{2}=1$:

$$
\begin{gathered}
x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq 2 \pi \\
x=\cos 11 t, \quad y=\sin 11 t, \quad 0 \leq t \leq \frac{2 \pi}{11} \\
x=-\sin t, \quad y=\cos t, \quad 0 \leq t \leq 2 \pi
\end{gathered}
$$

Even so, it can be difficult to find parametrizations for curves.
Let's start with an easy case. If you have $x-y$ equations in which x or y is solved for, it's easy. For example, to parametrize $y=x^{2}$, set $x=t$. Then $y=x^{2}=t^{2}$. A parametrization is given by

$$
x=t, \quad y=t^{2}
$$

To parametrize $x=3 y-y^{2}$, set $y=t$. Then $x=3 y-y^{2}=3 t-t^{2}$, so

$$
x=3 t-t^{2}, \quad y=t
$$

This is a parametrization of $x=3 y-y^{2}$. (This is how you can graph x-in-terms-of- y equations on your calculator.)

Here's another important case. If (a, b) and (c, d) are points, the line through (a, b) and (c, d) may be parametrized by

$$
x=a+t(c-a), \quad y=b+t(d-b), \quad-\infty<t<\infty .
$$

It is easiest to remember this in the vector form

$$
(x, y)=(1-t) \cdot(a, b)+t \cdot(c, d)
$$

Notice that when $t=0$, I have $(x, y)=(a, b)$, and when $t=1,(x, y)=(c, d)$. Thus, if you let $0 \leq t \leq 1$, you get the segment from (a, b) to (c, d).

Example. Find parametric equations for the line through $(3,-6)$ and $(5,2)$.

$$
\begin{aligned}
(x, y) & =(1-t) \cdot(3,-6)+t \cdot(5,2) \\
& =(3-3 t,-6+6 t)+(5 t, 2 t) \\
& =(3+2 t,-6+8 t)
\end{aligned}
$$

Thus,

$$
x=3+2 t \quad \text { and } \quad y=-6+8 t
$$

An analogous result holds for lines in 3 dimensions (or in any number of dimensions).
As an example of a more general method of parametrizing curves, I'll consider parametrizing by slope. The idea is to think of a point (x, y) on the curve as the intersection point of the curve and the line $y=x t$:

\square
The slope t will be the parameter for the curve.
Example. Find parametric equations for the Folium of Descartes:

$$
x^{3}+y^{3}=3 x y
$$

Set $y=x t$. Then

$$
\begin{aligned}
x^{3}+x^{3} t^{3}=3 x^{2} t & \\
x+x t^{3} & =3 t \\
x\left(1+t^{3}\right) & =3 t \\
x & =\frac{3 t}{1+t^{3}}
\end{aligned}
$$

Therefore, $y=x t=\frac{3 t^{2}}{1+t^{3}}$. A parametrization is given by

$$
x=\frac{3 t}{1+t^{3}}, \quad y=\frac{3 t^{2}}{1+t^{3}} .
$$

\square

The first and second derivatives give information about the shape of a curve. Here's how to find the derivatives for a parametric curve.

First, by the Chain Rule,

$$
\frac{d x}{d t} \cdot \frac{d y}{d x}=\frac{d y}{d t}
$$

Solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

Example. Find the equation of the tangent line to the curve

$$
\begin{gathered}
x=e^{t}+t^{2}, \quad y=e^{2 t}+3 t \quad \text { at } \quad t=1 \\
\frac{d y}{d x}=\frac{2 e^{2 t}+3}{e^{t}+2 t}, \quad \text { so }\left.\quad \frac{d y}{d x}\right|_{t=1}=\frac{2 e^{2}+3}{e+2}
\end{gathered}
$$

When $t=1, x=e+1$ and $y=e^{2}+3$. The tangent line is

$$
y-\left(e^{2}+3\right)=\left(\frac{2 e^{2}+3}{e+2}\right)(x-(e+1))
$$

Example. At what points on the following curve is the tangent line horizontal?

$$
x=t^{3}+t+2, \quad y=2 t^{3}-3 t^{2}-12 t+5
$$

Find the derivative:

$$
\frac{d y}{d x}=\frac{6 t^{2}-6 t-12}{3 t^{2}+1}=\frac{6(t-2)(t+1)}{3 t^{2}+1}
$$

The tangent line is horizontal when $\frac{d y}{d x}=0$, and $\frac{d y}{d x}=0$ for $t=2$ and for $t=-1$.
When $t=2, x=12$ and $y=-15$. When $t=-1, x=0$ and $y=12$. There are horizontal tangents are $(12,-15)$ and at $(0,12)$.

To find the second derivative, I differentiate the first derivative.

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

Since $\frac{d y}{d x}$ will come out in terms of t, I want to be sure to differentiate $\frac{d y}{d x}$ with respect to t. Use the Chain Rule again:

$$
\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d t}{d x} \cdot\left[\frac{d}{d t}\left(\frac{d y}{d x}\right)\right]=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

That is,

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

Example. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=1$ for

$$
x=t^{2}+t+2, \quad y=2 t^{3}-t+5
$$

First,

$$
\frac{d x}{d t}=2 t+1, \quad \frac{d y}{d t}=6 t^{2}-1
$$

So

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{6 t^{2}-1}{2 t+1}
$$

When $t=1$, I have $\frac{d y}{d x}=\frac{5}{3}$.
Next,

$$
\frac{d}{d t}\left(\frac{d y}{d x}\right)=\frac{d}{d t} \frac{6 t^{2}-1}{2 t+1}=\frac{(2 t+1)(12 t)-\left(6 t^{2}-1\right)(2)}{(2 t+1)^{2}}
$$

So

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{(2 t+1)(12 t)-\left(6 t^{2}-1\right)(2)}{(2 t+1)^{2}}}{2 t+1}=\frac{(2 t+1)(12 t)-\left(6 t^{2}-1\right)(2)}{(2 t+1)^{3}}
$$

When $t=1$, I have $\frac{d^{2} y}{d x^{2}}=\frac{26}{27} . \quad \square$

