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Parametric Equations of Curves

The parametric equations for a curve in the plane consists of a pair of equations

x = f(t), y = g(t), a ≤ t ≤ b.

Each value of the parameter t gives values for x and y; the point (x, y) is the corresponding point on
the curve.

For example, consider the parametric equations

x = t2 + 1, y = t3 + t+ 1.

Here are some points (x, y) which result from plugging in some values for t:

t x y

−2 5 −9

−1 2 −1

0 1 1

1 2 3

2 5 11

The graph of the curve looks like this:

These are parametric equations for the circle x2 + y2 = 1:

x = cos t, y = sin t, 0 ≤ t ≤ 2π
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You can sometimes recover the x-y equation of a parametric curve by eliminating t from the parametric
equations. In this case,

x2 + y2 = (cos t)2 + (sin t)2 = 1.
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Notice that the graph of a circle is not the graph of a function. Parametric equations can represent
more general curves than function graphs can, which is one of their advantages.

These parametric equations represent a spiral:

x = t cos t, y = t sin t,
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This is also not the graph of a function y = f(x).

Example. Find the x-y equation for

x = t3 + 1, y = t2 + t+ 1.

Solve the x-equation for t:
x = t3 + 1

x− 1 = t3

(x− 1)1/3 = t

Plug this expression for t into the y-equation:

y = (x− 1)2/3 + (x− 1)1/3 + 1.

Example. Find the x-y equation for

x = 5 + 2 cos t, y = −3 + sin t.

Notice that

cos t =
x− 5

2
, sin t = y + 3.

So
(

x− 5

2

)2

+ (y + 3)2 = (cos t)2 + (sin t)2 = 1.

This is the standard form for the equation of an ellipse.

In some cases, recovering an x-y equation would be difficult or impossible. For example, these are the
parametric equations for a hypocycloid of four cusps:

x = 3 cos t+ cos 3t, y = 3 sin t− sin 3t, 0 ≤ t ≤ 2π
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In this case, it would be difficult to eliminate t to obtain an x-y equation.

What about going the other way? If you have a curve (or an x-y equation), how do you obtain parametric
equations?

Note first that a given curve can be represent by infinitely many sets of parametric equations. For
example, all of these sets of parametric equations represent the unit circle x2 + y2 = 1:

x = cos t, y = sin t, 0 ≤ t ≤ 2π.

x = cos 11t, y = sin 11t, 0 ≤ t ≤
2π

11
.

x = − sin t, y = cos t, 0 ≤ t ≤ 2π.

Even so, it can be difficult to find parametrizations for curves.

Let’s start with an easy case. If you have x-y equations in which x or y is solved for, it’s easy. For
example, to parametrize y = x2, set x = t. Then y = x2 = t2. A parametrization is given by

x = t, y = t2.

To parametrize x = 3y − y2, set y = t. Then x = 3y − y2 = 3t− t2, so

x = 3t− t2, y = t.

This is a parametrization of x = 3y− y2. (This is how you can graph x-in-terms-of-y equations on your
calculator.)

Here’s another important case. If (a, b) and (c, d) are points, the line through (a, b) and (c, d) may be
parametrized by

x = a+ t(c− a), y = b+ t(d− b), −∞ < t < ∞.

It is easiest to remember this in the vector form

(x, y) = (1− t) · (a, b) + t · (c, d).

Notice that when t = 0, I have (x, y) = (a, b), and when t = 1, (x, y) = (c, d). Thus, if you let 0 ≤ t ≤ 1,
you get the segment from (a, b) to (c, d).

Example. Find parametric equations for the line through (3,−6) and (5, 2).

(x, y) = (1− t) · (3,−6) + t · (5, 2)

= (3− 3t,−6 + 6t) + (5t, 2t)

= (3 + 2t,−6 + 8t)
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Thus,
x = 3 + 2t and y = −6 + 8t.

An analogous result holds for lines in 3 dimensions (or in any number of dimensions).

As an example of a more general method of parametrizing curves, I’ll consider parametrizing by

slope. The idea is to think of a point (x, y) on the curve as the intersection point of the curve and the line
y = xt:

curve

(0,0)

The slope t will be the parameter for the curve.

Example. Find parametric equations for the Folium of Descartes:

x3 + y3 = 3xy.

Set y = xt. Then
x3 + x3t3 = 3x2t

x+ xt3 = 3t

x(1 + t3) = 3t

x =
3t

1 + t3

Therefore, y = xt =
3t2

1 + t3
. A parametrization is given by

x =
3t

1 + t3
, y =

3t2

1 + t3
.
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The first and second derivatives give information about the shape of a curve. Here’s how to find the
derivatives for a parametric curve.

First, by the Chain Rule,
dx

dt
·
dy

dx
=

dy

dt
.

Solving for
dy

dx
gives

dy

dx
=

dy

dt
dx

dt

.

Example. Find the equation of the tangent line to the curve

x = et + t2, y = e2t + 3t at t = 1.

dy

dx
=

2e2t + 3

et + 2t
, so

dy

dx

∣

∣

∣

∣

t=1

=
2e2 + 3

e+ 2
.

When t = 1, x = e+ 1 and y = e2 + 3. The tangent line is

y − (e2 + 3) =

(

2e2 + 3

e + 2

)

(x − (e+ 1)).

Example. At what points on the following curve is the tangent line horizontal?

x = t3 + t+ 2, y = 2t3 − 3t2 − 12t+ 5

Find the derivative:
dy

dx
=

6t2 − 6t− 12

3t2 + 1
=

6(t− 2)(t+ 1)

3t2 + 1
.

The tangent line is horizontal when
dy

dx
= 0, and

dy

dx
= 0 for t = 2 and for t = −1.

When t = 2, x = 12 and y = −15. When t = −1, x = 0 and y = 12. There are horizontal tangents are
(12,−15) and at (0, 12).
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To find the second derivative, I differentiate the first derivative.

d2y

dx2
=

d

dx

(

dy

dx

)

.
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Since
dy

dx
will come out in terms of t, I want to be sure to differentiate

dy

dx
with respect to t. Use the

Chain Rule again:

d

dx

(

dy

dx

)

=
dt

dx
·

[

d

dt

(

dy

dx

)]

=

d

dt

(

dy

dx

)

dx

dt

.

That is,

d2y

dx2
=

d

dt

(

dy

dx

)

dx

dt

.

Example. Find
dy

dx
and

d2y

dx2
at t = 1 for

x = t2 + t+ 2, y = 2t3 − t+ 5.

First,
dx

dt
= 2t+ 1,

dy

dt
= 6t2 − 1.

So

dy

dx
=

dy

dt
dx

dt

=
6t2 − 1

2t+ 1
.

When t = 1, I have
dy

dx
=

5

3
.

Next,
d

dt

(

dy

dx

)

=
d

dt

6t2 − 1

2t+ 1
=

(2t+ 1)(12t)− (6t2 − 1)(2)

(2t+ 1)2
.

So

d2y

dx2
=

d

dt

(

dy

dx

)

dx

dt

=

(2t+ 1)(12t)− (6t2 − 1)(2)

(2t+ 1)2

2t+ 1
=

(2t+ 1)(12t)− (6t2 − 1)(2)

(2t+ 1)3
.

When t = 1, I have
d2y

dx2
=

26

27
.
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