Power Series - Review

Example. Expand $f(x)=\frac{5}{11-x}$ in a power series at $c=3$ and find the interval of convergence.
I will use the series for $\frac{1}{1-u}$:

$$
\frac{1}{1-u}=1+u+u^{2}+\cdots+u^{n}+\cdots=\sum_{n=0}^{\infty} u^{n} .
$$

I need powers of $x-3$, so I make an " $x-3$ " on the bottom, then fix the numbers so the value of the fraction doesn't change. Then I do algebra to put my function into the form $\frac{1}{1-u}$, at which point I can substitute:

$$
\begin{gathered}
\frac{5}{11-x}=\frac{5}{8-(x-3)}=5 \cdot \frac{1}{8-(x-3)}=\frac{5}{8} \cdot \frac{1}{1-\frac{1}{8}(x-3)}= \\
\frac{5}{8}\left(1+\frac{1}{8}(x-3)+\frac{1}{8^{2}}(x-3)^{2}+\cdot\right)=\frac{5}{8} \sum_{n=0}^{\infty} \frac{1}{8^{n}}(x-3)^{n} .
\end{gathered}
$$

I substituted $u=\frac{1}{8}(x-3)$ in the u-series to get my series.
The interval of convergence for the series for $\frac{1}{1-u}$ is $-1<u<1$. Substitute $u=\frac{1}{8}(x-3)$:

$$
\begin{aligned}
& -1<\frac{1}{8}(x-3)<1 \\
& -8<x-3<8 \\
& -5<x<11
\end{aligned}
$$

Example. Find the interval of convergence of $\sum_{n=0}^{\infty} \frac{3^{n}(x-5)^{n}}{2^{n}}$.
Apply the Root Test:

$$
\lim _{n \rightarrow \infty}\left(\frac{3^{n}|x-5|^{n}}{2^{n}}\right)^{1 / n}=\lim _{n \rightarrow \infty} \frac{3}{2}|x-5|=\frac{3}{2}|x-5| .
$$

The series converges for

$$
\frac{3}{2}|x-5|<1, \quad \text { i.e. for } \quad \frac{13}{3}<x<\frac{17}{3} .
$$

At $x=\frac{17}{3}$, the series is

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n}}\left(\frac{17}{3}-5\right)^{n}=\sum_{n=0}^{\infty} 1
$$

This series diverges by the Zero Limit Test.
At $x=\frac{13}{3}$, the series is

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n}}\left(\frac{13}{3}-5\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} .
$$

This series also diverges by the Zero Limit Test.
The power series converges for $\frac{13}{3}<x<\frac{17}{3}$ and diverges elsewhere.

Example. Expand $f(x)=e^{-3 x}$ in a power series at $c=4$ and find the interval of convergence.

$$
e^{-3 x}=e^{-3(x-4)-12}=e^{-12} e^{-3(x-4)}
$$

Set $u=-3(x-4)$ in

$$
e^{u}=1+u+\frac{u^{2}}{2!}+\frac{u^{3}}{3!}+\cdots
$$

This gives

$$
e^{-3 x}=e^{-12}\left(1-3(x-4)+\frac{3^{2}(x-4)^{2}}{2!}-\frac{3^{3}(x-4)^{3}}{3!}+\cdots\right)
$$

The interval of convergence for the e^{u} series is $-\infty<u<\infty$. So for the $e^{-3 x}$ series,

$$
-\infty<-3(x-4)<+\infty, \quad-\infty<x<+\infty
$$

Example. Expand $(\cos 5 x)^{2}$ in a Taylor series at $c=0$.
Using the double angle formula

$$
\begin{gathered}
(\cos 5 x)^{2}=\frac{1}{2}(1+\cos 10 x)=\frac{1}{2}+\frac{1}{2} \cos 10 x=\frac{1}{2}+\frac{1}{2}\left(1-\frac{10^{2} x^{2}}{2!}+\frac{10^{4} x^{4}}{4!}-\frac{10^{6} x^{6}}{6!}+\cdots\right)= \\
1-\frac{1}{2} \frac{10^{2} x^{2}}{2!}+\frac{1}{2} \frac{10^{4} x^{4}}{4!}-\frac{1}{2} \frac{10^{6} x^{6}}{6!}+\cdots .
\end{gathered}
$$

Example. (a) Use the first four nonzero terms of the Taylor series for e^{u} at $c=0$ to approximate $\int_{0}^{1} e^{-x^{3}} d x$.
(b) Use the Alternating Series Test to estimate the error in part (a).
(a)

$$
e^{-x^{3}}=1-x^{3}+\frac{x^{6}}{2!}-\frac{x^{9}}{3!}+\frac{x^{12}}{4!}-\cdots
$$

Hence,

$$
\begin{gathered}
\int_{0}^{1} e^{-x^{3}} d x=\int_{0}^{1}\left(1-x^{3}+\frac{x^{6}}{2!}-\frac{x^{9}}{3!}+\frac{x^{12}}{4!}-\cdots\right) d x=\left[x-\frac{x^{4}}{4}+\frac{x^{7}}{14}-\frac{x^{10}}{60}+\frac{x^{13}}{312}-\cdots\right]_{0}^{1}= \\
1-\frac{1}{4}+\frac{1}{14}-\frac{1}{60}+\frac{1}{312}-\cdots \approx 0.80476
\end{gathered}
$$

(I used the first four terms to get the approximation.) $\quad \square$
(b) The error is no greater than the next term, which is $\frac{1}{312}=0.00320 \ldots$.

Example. Use the Taylor series expansion of $\sin x$ at $c=0$ to explain the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
The series for $\sin x$ at $c=0$ is

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

Divide by x to obtain

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots
$$

Then

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)=1
$$

Example. Find the first four nonzero terms of the Taylor expansion for $y=\sin x$ at $c=3$.

$$
f^{\prime}(x)=\cos x, \quad f^{\prime \prime}(x)=-\sin x, \quad f^{\prime \prime \prime}(x)=-\cos x .
$$

The series is

$$
\sin x=\sin 3+(\cos 3)(x-3)-\frac{\sin 3}{2!}(x-3)^{2}-\frac{\cos 3}{3!}(x-3)^{3}+\cdots
$$

Example. Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(x-5)^{2 n}}{n \cdot 9^{n}}$.

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\frac{|x-5|^{2 n+2}}{(n+1) \cdot 9^{n+1}}}{\frac{|x-5|^{2 n}}{n \cdot 9^{n}}}=\lim _{n \rightarrow \infty} \frac{|x-5|^{2 n+2}}{(n+1) \cdot 9^{n+1}} \frac{n \cdot 9^{n}}{|x-5|^{2 n}}= \\
\lim _{n \rightarrow \infty} \frac{9^{n}}{9^{n+1}} \cdot \frac{n}{n+1} \cdot \frac{|x-5|^{2 n+2}}{|x-5|^{2 n}}=\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot \frac{1}{9}|x-5|=\frac{1}{9}|x-5|^{2} .
\end{gathered}
$$

The series converges for

$$
\frac{1}{9}|x-5|^{2}<1, \quad \text { i.e. for } \quad 2<x<8
$$

At $x=8$, the series is

$$
\sum_{n=1}^{\infty} \frac{3^{2 n}}{n \cdot 9^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

This is harmonic, so it diverges.
At $x=2$, the series is

$$
\sum_{n=1}^{\infty} \frac{(-3)^{2 n}}{n \cdot 9^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

This is harmonic, so it diverges.
The power series converges for $2<x<8$ and diverges elsewhere.

Example. $f(x)$ satisfies

$$
f(2)=5, \quad f^{\prime}(2)=2, \quad f^{\prime \prime}(2)=-3, \quad f^{\prime \prime \prime}(2)=12
$$

Use the third degree Taylor polynomial for f at $c=2$ to approximate $f(2.1)$.
The third degree Taylor polynomial for f at $c=2$ is

$$
p_{3}(x)=5+2(x-2)-\frac{3}{2!}(x-2)^{2}+\frac{12}{3!}(x-2)^{3}=5+2(x-2)-\frac{3}{2}(x-2)^{2}+2(x-2)^{3} .
$$

So

$$
f(2.1) \approx p_{3}(2.1)=5+(2)(0.1)-\left(\frac{3}{2}\right)(0.1)^{2}+2 \cdot(0.1)^{3}=5.187
$$

Example. Suppose that $f^{(5)}(x)=\frac{2}{(1-x)^{7}}$. Use $R_{4}(x ; 0)$ to estimate the error in using the fourth degree Taylor polynomial at $c=0$ to approximate $f(x)$ for $0 \leq x \leq 0.1$.

For some z between 0 and x,

$$
R_{4}(x ; 0)=\frac{f^{(5)}(z)}{5!} x^{5}=\frac{1}{120}\left(\frac{2}{(1-z)^{7}}\right) x^{5}
$$

Since $0 \leq x \leq 0.1, x^{5} \leq 0.1^{5}$.
For the z-term, I have $0 \leq z \leq x \leq 0.1$. Thus,

$$
\begin{aligned}
& 0 \leq z \leq 0.1 \\
& 0 \geq-z \geq-0.1 \\
& 1 \geq 1-z \geq 0.9 \\
& 1 \geq(1-z)^{7} \geq 0.9^{7} \\
& 1 \leq \frac{1}{(1-z)^{7}} \leq \frac{1}{0.9^{7}} \\
& 2 \leq \frac{2}{(1-z)^{7}} \leq \frac{2}{0.9^{7}}
\end{aligned}
$$

So $\frac{2}{(1-z)^{7}} \leq \frac{2}{0.9^{7}}$. Therefore,

$$
R_{4}(x ; 0) \leq\left(\frac{1}{120}\right)\left(\frac{2}{0.9^{7}}\right)\left(0.1^{5}\right) \approx 3.4845 \cdot 10^{-7}
$$

