
Power Series - Review

Example. Expand f(x) =
5

11− x
in a power series at c = 3 and find the interval of convergence.

I will use the series for
1

1− u
:

1

1− u
= 1 + u+ u2 + · · ·+ un + · · · =

∞
∑

n=0

un.

I need powers of x − 3, so I make an “x − 3” on the bottom, then fix the numbers so the value of the

fraction doesn’t change. Then I do algebra to put my function into the form
1

1− u
, at which point I can

substitute:
5

11− x
=

5

8− (x− 3)
= 5 ·

1

8− (x− 3)
=

5

8
·

1

1−
1

8
(x− 3)

=

5

8

(

1 +
1

8
(x − 3) +

1

82
(x− 3)2 + ·

)

=
5

8

∞
∑

n=0

1

8n
(x− 3)n.

I substituted u =
1

8
(x− 3) in the u-series to get my series.

The interval of convergence for the series for
1

1− u
is −1 < u < 1. Substitute u =

1

8
(x− 3):

−1 <
1

8
(x− 3) < 1

−8 < x− 3 < 8

−5 < x < 11

Example. Find the interval of convergence of

∞
∑

n=0

3n(x− 5)n

2n
.

Apply the Root Test:

lim
n→∞

(

3n|x− 5|n

2n

)1/n

= lim
n→∞

3

2
|x− 5| =

3

2
|x− 5|.

The series converges for
3

2
|x− 5| < 1, i.e. for

13

3
< x <

17

3
.

At x =
17

3
, the series is

∞
∑

n=0

3n

2n

(

17

3
− 5

)n

=

∞
∑

n=0

1.

This series diverges by the Zero Limit Test.

At x =
13

3
, the series is

∞
∑

n=0

3n

2n

(

13

3
− 5

)n

=

∞
∑

n=0

(−1)n.
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This series also diverges by the Zero Limit Test.

The power series converges for
13

3
< x <

17

3
and diverges elsewhere.

Example. Expand f(x) = e−3x in a power series at c = 4 and find the interval of convergence.

e−3x = e−3(x−4)−12 = e−12e−3(x−4).

Set u = −3(x− 4) in

eu = 1 + u+
u2

2!
+

u3

3!
+ · · · .

This gives

e−3x = e−12

(

1− 3(x− 4) +
32(x − 4)2

2!
−

33(x− 4)3

3!
+ · · ·

)

.

The interval of convergence for the eu series is −∞ < u < ∞. So for the e−3x series,

−∞ < −3(x− 4) < +∞, −∞ < x < +∞.

Example. Expand (cos 5x)2 in a Taylor series at c = 0.

Using the double angle formula

(cos 5x)2 =
1

2
(1 + cos 10x) =

1

2
+

1

2
cos 10x =

1

2
+

1

2

(

1−
102x2

2!
+

104x4

4!
−

106x6

6!
+ · · ·

)

=

1−
1

2

102x2

2!
+

1

2

104x4

4!
−

1

2

106x6

6!
+ · · · .

Example. (a) Use the first four nonzero terms of the Taylor series for eu at c = 0 to approximate

∫ 1

0

e−x3

dx.

(b) Use the Alternating Series Test to estimate the error in part (a).

(a)

e−x3

= 1− x3 +
x6

2!
−

x9

3!
+

x12

4!
− · · · .

Hence,

∫ 1

0

e−x3

dx =

∫ 1

0

(

1− x3 +
x6

2!
−

x9

3!
+

x12

4!
− · · ·

)

dx =

[

x−
x4

4
+

x7

14
−

x10

60
+

x13

312
− · · ·

]1

0

=

1−
1

4
+

1

14
−

1

60
+

1

312
− · · · ≈ 0.80476.

(I used the first four terms to get the approximation.)

(b) The error is no greater than the next term, which is
1

312
= 0.00320 . . ..
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Example. Use the Taylor series expansion of sinx at c = 0 to explain the fact that lim
x→0

sinx

x
= 1.

The series for sinx at c = 0 is

sinx = x−
x3

3!
+

x5

5!
− · · · .

Divide by x to obtain
sinx

x
= 1−

x2

3!
+

x4

5!
− · · · .

Then

lim
x→0

sinx

x
= lim

x→0

(

1−
x2

3!
+

x4

5!
− · · ·

)

= 1.

Example. Find the first four nonzero terms of the Taylor expansion for y = sinx at c = 3.

f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx.

The series is

sinx = sin 3 + (cos 3)(x− 3)−
sin 3

2!
(x− 3)2 −

cos 3

3!
(x− 3)3 + · · · .

Example. Find the interval of convergence of
∞
∑

n=1

(x− 5)2n

n · 9n
.

lim
n→∞

|x− 5|2n+2

(n+ 1) · 9n+1

|x− 5|2n

n · 9n

= lim
n→∞

|x− 5|2n+2

(n+ 1) · 9n+1

n · 9n

|x− 5|2n
=

lim
n→∞

9n

9n+1
·

n

n+ 1
·
|x− 5|2n+2

|x− 5|2n
= lim

n→∞

n

n+ 1
·
1

9
|x− 5| =

1

9
|x− 5|2.

The series converges for
1

9
|x− 5|2 < 1, i.e. for 2 < x < 8.

At x = 8, the series is
∞
∑

n=1

32n

n · 9n
=

∞
∑

n=1

1

n
.

This is harmonic, so it diverges.
At x = 2, the series is

∞
∑

n=1

(−3)2n

n · 9n
=

∞
∑

n=1

1

n
.

This is harmonic, so it diverges.
The power series converges for 2 < x < 8 and diverges elsewhere.

Example. f(x) satisfies

f(2) = 5, f ′(2) = 2, f ′′(2) = −3, f ′′′(2) = 12.
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Use the third degree Taylor polynomial for f at c = 2 to approximate f(2.1).

The third degree Taylor polynomial for f at c = 2 is

p3(x) = 5 + 2(x− 2)−
3

2!
(x − 2)2 +

12

3!
(x− 2)3 = 5 + 2(x− 2)−

3

2
(x − 2)2 + 2(x− 2)3.

So

f(2.1) ≈ p3(2.1) = 5 + (2)(0.1)−

(

3

2

)

(0.1)2 + 2 · (0.1)3 = 5.187.

Example. Suppose that f (5)(x) =
2

(1− x)7
. Use R4(x; 0) to estimate the error in using the fourth degree

Taylor polynomial at c = 0 to approximate f(x) for 0 ≤ x ≤ 0.1.

For some z between 0 and x,

R4(x; 0) =
f (5)(z)

5!
x5 =

1

120

(

2

(1− z)7

)

x5.

Since 0 ≤ x ≤ 0.1, x5 ≤ 0.15.
For the z-term, I have 0 ≤ z ≤ x ≤ 0.1. Thus,

0 ≤z ≤ 0.1

0 ≥− z ≥ −0.1

1 ≥1− z ≥ 0.9

1 ≥(1− z)7 ≥ 0.97

1 ≤
1

(1− z)7
≤

1

0.97

2 ≤
2

(1− z)7
≤

2

0.97

So
2

(1 − z)7
≤

2

0.97
. Therefore,

R4(x; 0) ≤

(

1

120

)(

2

0.97

)

(0.15) ≈ 3.4845 · 10−7.
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