Power Series - Review

Example. Expand f(x) = in a power series at ¢ = 3 and find the interval of convergence.
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I need powers of z — 3, so I make an “z — 3” on the bottom, then fix the numbers so the value of the

, at which point I can

fraction doesn’t change. Then I do algebra to put my function into the form 1

substitute:
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I substituted u = g(x — 3) in the u-series to get my series.
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The interval of convergence for the series for is =1 < u < 1. Substitute u = g(x —3):
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Example. Find the interval of convergence of Z o
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Apply the Root Test:
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The series converges for
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Atz = 3 the series is
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This series diverges by the Zero Limit Test.
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Atz = 3 the series is
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This series also diverges by the Zero Limit Test.

The power series converges for 3 <z< 3 and diverges elsewhere. [

Example. Expand f(x) = e~3% in a power series at ¢ = 4 and find the interval of convergence.
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Set u=—3(z —4) in
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This gives
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The interval of convergence for the e* series is —0o < u < co. So for the e 3% series,

—00 < =3(x —4) < 400, —w<zx<+4o00. O

Example. Expand (cos5z)? in a Taylor series at ¢ = 0.

Using the double angle formula
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Example. (a) Use the first four nonzero terms of the Taylor series for e* at ¢ = 0 to approximate / e’ da.
0

(b) Use the Alternating Series Test to estimate the error in part (a).
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(T used the first four terms to get the approximation.) 0O
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(b) The error is no greater than the next term, which is 30 0.00320.... O
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sin x
Example. Use the Taylor series expansion of sinx at ¢ = 0 to explain the fact that lim
T

The series for sinz at ¢ = 0 is
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Example. Find the first four nonzero terms of the Taylor expansion for y = sinz at ¢ = 3.

fl(z) =cosz, f"(z)=—sinz, [f"(x)=—cosx.
The series is
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sinz = sin3 + (cos 3)(z — 3) — S (x—3)* — €O
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Example. Find the interval of convergence of Z —_
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The series converges for

1
§|;1c—5|2 <1, ie for 2<z<8

At x = 8, the series is
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This is harmonic, so it diverges.
At z = 2, the series is
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This is harmonic, so it diverges.

The power series converges for 2 < z < 8 and diverges elsewhere. [

Example. f(x) satisfies

f@)=5_f@=2 [f'2=-3 ["@2)=12



Use the third degree Taylor polynomial for f at ¢ = 2 to approximate f(2.1).

The third degree Taylor polynomial for f at ¢ =2 is

3 12 3
ps(z) =5+2(x —2) — 5(;u—2)2+§(ac—2)3 =5+2(x—2)— 5(;c—2)2+2(x—2)3.
So 5
F(2.1) ~ ps(2.1) = 5+ (2)(0.1) — <§> (0.1)2+2-(0.1) = 5.187. O
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Example. Suppose that f©®)(z) = A= Use R4(x;0) to estimate the error in using the fourth degree

Taylor polynomial at ¢ = 0 to approximate f(z) for 0 < x <0.1.

For some z between 0 and =,

Ry(z;0) = f(z(z) xd = EIO < 2 ) o,

Since 0 < z < 0.1, 2® < 0.15.
For the z-term, I have 0 < z < x < 0.1. Thus,

0<z2<0.1
0>—-2z>-01

So

2 2
a2 < 097 Therefore,
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