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The Remainder Term

If the Taylor series for a function f(x) is truncated at the nth term, what is the difference between f(x)
and the value given by the nth Taylor polynomial? That is, what is the error involved in using the Taylor
polynomial to approximate the function?

Theorem. Suppose you expand f around c, and that f is (n + 1)-times continuously differentiable on an
open interval containing c. If x is another point in this interval, then for some z in the open interval between
x and c,

f(x) =

n
∑

k=0

f (k)(c)

k!
(x − c)k +

f (n+1)(z)

(n+ 1)!
(x− c)n+1.

pn(x; c) =

n
∑

k=0

f (k)(c)

k!
(x − c)k is the nth degree Taylor polynomial at c. The other term on the right is

called the Lagrange remainder term:

Rn(x; c) =
f (n+1)(z)

(n+ 1)!
(x− c)n+1.

The appearance of z, a point between x and c, and the fact that it’s being plugged into a derivative
suggest that there is a connection between this result and the Mean Value Theorem. In fact, for n = 0 the
result says that there is a number z between c and x such that

f(x) = f(c) + f ′(z) · (x− c).

This is the Mean Value Theorem.
On the one hand, this reflects the fact that Taylor’s theorem is proved using a generalization of the

Mean Value Theorem. On the other hand, this shows that you can regard a Taylor expansion as an extension

of the Mean Value Theorem.

Example. Compute the Remainder Term R3(x; 1) for f(x) = sin 2x.

For the third remainder term, I need the fourth derivative:

f ′(x) = 2 cos 2x, f ′′(x) = −4 sin2x, f ′′′(x) = −8 cos 2x, f (4)(x) = 16 sin 2x.

The Remainder Term is

R3(x; 1) =
16 sin2z

4!
(x− 1)4.

z is a number between x and 1.

Example. Compute the Remainder Term Rn(x; 3) for f(x) = e4x.

Since I want the nth Remainder Term, I need to find an expression for the (n + 1)st derivative. I’ll
compute derivative until I see a pattern:

f ′(x) = 4e4x, f ′′(x) = 42e4x, f ′′′(x) = 43e4x.

Notice that it’s easier to see the pattern if you don’t multiply out the power of 4.
Thus,

f (n)(x) = 4ne4x, so f (n+1)(x) = 4n+1e4x.
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The Remainder Term is

Rn(x; 3) =
4n+1e4z

(n+ 1)!
(x − 3)n+1.

z is a number between x and 3.

There are several things you might do with the Remainder Term:

1. Estimate the error in using pn(x; c) to estimate f(x) on a given interval (c− r, c+ r). (The interval
and the degree n are fixed; you want to find the error.)

2. Find the smallest value of n for which pn(x; c) approximates f(x) to within a given error (“tolerance”)
on a given interval (c− r, c+ r). (The interval and the error are fixed; you want to find the degree.)

3. Find the largest interval (c − r, c + r) on which pn(x; c) approximates f(x) to within a given error
(“tolerance”). (The degree and the error are fixed; you want to find the interval.)

Example. The Maclaurin series for ln(1 + x) is

ln(1 + x) = x−
x2

2
+

x3

3
−

x4

4
+ · · · .

What is the largest error which might result from using the first three terms of the series to approximate
ln(1 + x), if 0 ≤ x ≤ 1?

The remainder term is

Rn(x; 0) =
f (n+1)(z)

(n+ 1)!
xn+1,

I have 0 < z < x. I want to estimate the maximum size of |R3(x; 0)|. I take absolute values, because I
don’t care whether the error is positive or negative, only how large it is.

f(x) = ln(1 + x), and you can check by taking derivatives that f (4)(x) =
−6

(1 + x)4
. Thus, f (4)(z) =

−6

(1 + z)4
. So

|R3(x; 0)| =

∣

∣

∣

∣

∣

∣

∣

∣

−6

(1 + z)4

4!
(x− 0)4

∣

∣

∣

∣

∣

∣

∣

∣

=
1

4

1

(1 + z)4
|x|4.

Since I want the largest possible error, I want to see how large the terms
1

(1 + z)4
and |x|4 could be.

Remember that z is between 0 and x, and 0 ≤ x ≤ 1. So

0 < z < x ≤ 1.

First, 0 ≤ x ≤ 1 means that

|x|4 ≤ 14 = 1.

How large can
1

(1 + z)4
be, given that 0 < z < 1? As z goes from 0 to 1,

1

(1 + z)4
decreases, so it is

largest if z = 0. This means that
1

(1 + z)4
≤ 1.
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You can also see this by doing the algebra:

0 < z < 1

1 < z + 1 < 2

1 < (z + 1)4 < 16

1 >
1

(1 + z)4
>

1

16

In general, to estimate the z-term you’d have to find the absolute max on the interval for z. If you know
that the z-term is either increasing or decreasing, you can check its value at the interval endpoints, and take
the largest.

Using the estimates for
1

(1 + z)4
and |x|4, I have

|R3(x; 0)| ≤
1

4
· 1 · 1 =

1

4
.

The error is no greater than
1

4
.

I can check this by plotting the difference between the 3rd degree Taylor polynomial and ln(1 + x).
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From the picture, it looks as though the maximum error is around 0.15 (in absolute value). The
estimated error was pretty conservative.

Example. (a) Compute R3(x; 0) for f(x) =
1

2 + x
, and express f(x) using p3(x) and the remainder term.

(b) Use R3(x; 0) to approximate the largest error that occurs in using p3(x) to approximate
1

2 + x
for

0 ≤ x ≤ 1.

(a) Since I want R3(x; 0), I need the fourth derivative:

f ′(x) =
−1

(2 + x)2
, f ′′(x) =

2

(2 + x)3
, f ′′′(x) =

−6

(x+ x)4
, f (4)(x) =

24

(2 + x)5
.

Thus,

R3(x; 0) =
24

(2 + z)5
·
1

4!
x4 =

x4

(2 + z)5
.
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Now
1

2 + x
=

1

2
·

1

1−
(

−
x

2

) =
1

2
·

(

1−
x

2
+

x2

4
−

x3

8
+ · · ·

)

.

Therefore,
1

2 + x
=

1

2
·

(

1−
x

2
+

x2

4
−

x3

8

)

+
x4

(2 + z)5
.

Here z is between 0 and x.

(b) I have

|R3(x; 0)| =
1

(2 + z)5
· |x|4.

I’ll estimate the z and x-terms one at a time.
Since 0 ≤ x ≤ 1, I have

|x|4 ≤ 14 = 1.

Since 0 ≤ x ≤ 1 and z is between 0 and x, it follows that 0 ≤ z ≤ 1. On this interval,
1

(2 + z)5
decreases,

so it attains its largest value at z = 0. Therefore,

1

(2 + z)5
≤

1

(2 + 0)5
=

1

32
.

Alternatively,
0 < z < 1

2 < 2 + z < 3

32 < (2 + z)5 < 243

1

32
>

1

(2 + z)5
>

1

243

Thus,

|R3(x; 0)| ≤
1

32
· 1 =

1

32
.

The error is no greater than
1

32
.

Example. Find the smallest value of n for which the nth degree Taylor series for f(x) = e2x at c = 0
approximates e2x on the interval 0 ≤ x ≤ 0.3 with an error no greater than 10−6.

Notice that

f ′(x) = 2e2x, f ′′(x) = 22e2x, f (3)(x) = 23e2x, . . . , f (n)(x) = 2ne2x.

So

|Rn(x; 0)| =

∣

∣

∣

∣

2n+1e2z

(n+ 1)!
xn+1

∣

∣

∣

∣

=
2n+1e2z

(n+ 1)!
|x|n+1 for 0 ≤ z ≤ x ≤ 0.3.

First, I’ll estimate how large the z and x-terms can be. Since 0 ≤ x ≤ 0.3 and xn is an increasing
function, I have

|x|n+1 ≤ 0.3n+1.

Since 0 ≤ z ≤ 0.3 and since e2z is an increasing function, I have

e2z ≤ e0.6.
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Thus,

|Rn(x; 0)| ≤
2n+1e0.6

(n+ 1)!
· 0.3n+1 = e0.6

0.6n+1

(n+ 1)!
.

Therefore, I want the smallest n for which

e0.6
0.6n+1

(n+ 1)!
< 10−6.

I can’t solve this inequality algebraically, so I’ll have to use trial-and-error:

n e0.6
0.6n+1

(n+ 1)!

1 0.32798 . . .

2 0.06559 . . .

3 0.00983 . . .

4 0.00118 . . .

5 1.18073 . . . · 10−4

6 1.01205 . . . · 10−5

7 7.59042 . . . · 10−7

The smallest value of n is n = 7.

You can also use the Remainder Term to estimate the error in using a Taylor polynomial to approximate
an integral.

Example. Calvin wants to impress Phoebe Small by using the MacLaurin series for e2x to approximate
∫ 0.5

0

xe2x dx to within 0.0001. How many terms of the series should he use?

The Maclaurin series for e2x is

e2x =

∞
∑

n=0

2nxn

n!
.

(Substitute u = 2x in the standard series for eu.) I want to know how many terms of the series to use
to approximate the integral.

Since f(x) = e2x, I have

f ′(x) = 2e2x, f ′′(x) = 22e2x, . . . fn(x) = 2ne2x.

Therefore,

Rn(x) =
1

(n+ 1)!
f (n+1)(z)(x− c)n+1 =

1

(n+ 1)!
· 2n · e2z · xn+1.

In the integral, x goes from 0 to 0.5, and z is a number between 0 (the expansion point) and x. Therefore,
I know that z is a number between 0 and 0.5. Taking the worst possible case, the largest e2c could be is
e2·0.5 = e. Replace e2z with e to obtain

Rn(x) ≤
1

(n+ 1)!
· 2n · e · xn+1.
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Insert this into the integral (remembering to multiply by x):

error ≤

∫ 0.5

0

1

(n+ 1)!
· 2n · e · xn+2 dx =

1

(n+ 1)!
2n+1 · e ·

1

n+ 3
· (0.5)n+3.

I want the smallest value of n for which this ugly mess is less than 0.0001. The easiest way to do this
is by trial: Plug in successive values of n.

n
2n+1

(n+ 1)!
·

e

n+ 3
· 0.5n+3

0 0.226523485 . . .

1 0.084946307 . . .

2 0.022652348 . . .

3 0.004719239 . . .

4 0.000809012 . . .

5 0.000117980 . . .

6 0.000014981 . . .

n = 6 is the smallest value that works.
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