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Sequences

An sequence is a list of numbers, finite or infinite. Most of what we do will be concerned with infinite
sequences.

Here are some sequences:
7, 11, 15, 19 . . . 3 + 4n, . . . n ≥ 1.

1, 2, 4, 8, 16, . . . 2n, . . . n ≥ 0.

The first sequence is an arithmetic sequence: You get the next term by adding a constant (in this
case, 4) to the previous term.

The second sequence is a geometric sequence: You get the next term by multiplying the previous
term by a constant (in this case, 2). The constant that you multiply by is called the ratio of the geometric
sequence.

The expressions 3 + 4n and 2n give the general terms of the sequences, and the ranges for n are given
by n ≥ 1 and n ≥ 0. You could write these sequences by just giving their general terms:

an = 3 + 4n for n ≥ 1.

bn = 2n for n ≥ 0.

The a and b are just dummy variables. The subscript n is the important thing, since it keeps track of
the number of the term and also occurs in the formulas 3 + 4n and 2n.

You can also write {3 + 4n}∞n=1 and {2n}∞n=0.
There is no reason why you have to start indexing at 0. Here is the second sequence, indexed from 1:

cn = 2n−1, n = 1, 2, . . . .

The picture below shows a plot of the first few terms of the sequence bn = 2n using n on the horizontal
axis and the value of the sequence on the vertical axis. That is, I plotted the points

(0, 1), (1, 2), (2, 4), (3, 8), (4, 16), . . . .
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To make it look like an ordinary graph, I connected the dots with segments, but you can also plot the
points by themselves.

Note that the order of the numbers in a sequence is important. These are different sequences:

0, 1, 0, 0, 0, . . . and 1, 0, 0, 0, 0, . . .

Example. (a) Write the first 5 terms of the arithmetic sequence bn = 5− 2n where n ≥ 0.

1



(b) Write the first 5 terms of the geometric sequence 5 ·
(

−1

3

)n

where n ≥ 0.

(a) The sequence starts with the terms

5, 3, 1,−1,−3, . . .

(b) The sequence starts with the terms

5,−5

3
,
5

9
,− 5

27
,
5

81
, . . .

We’re often concerned with the limit of a sequence — that is, a number that the terms approach (if
there is one). The definition is like the definition of a limit of a function of a real number.

Definition. Let {an} be a sequence. Then lim
n→∞

an = L means: For every ǫ > 0, there is a number M such

that for n > M ,
ǫ > |an − L|.

L is called the limit of the sequence. If a sequence has a number as a limit, the sequence converges;
otherwise, it diverges.

There are two cases in which we can be more specific about the way that a sequence diverges.
We write lim

n→∞

an = ∞ to mean that for every number L, there is a number M such that for n > M ,

an > L.

Likewise, we write lim
n→∞

an = −∞ to mean that for every number L, there is a number M such that for

n > M ,
an < L.

Many of the familiar rules for limits of functions hold for limits of sequences.

Theorem. Suppose {an}, {bn}, and {cn} are sequences. Then:

(a) lim
n→∞

k = k, where k is a constant.

(b) lim
n→∞

(kan) = k · lim
n→∞

an, where k is a constant.

(c) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

(d) lim
n→∞

an · bn =
(

lim
n→∞

an

)(

lim
n→∞

bn

)

.

(e) lim
n→∞

an

bn
=

limn→∞ an

limn→∞ bn
, provided that lim

n→∞

bn 6= 0.

(f) (Squeezing Theorem) If an ≤ bn ≤ cn for all n, and lim
n→∞

an = L and lim
n→∞

cn = L, then lim
n→∞

bn = L.

As usual, in parts (b), (c), (d), and (e) the interpretation is that the two sides of an equation are equal
when all the limits involved are defined.

Besides the rules above, you may also use L’Hôpital’s Rule to compute limits of sequences.

Proof. I’ll prove (c) as an example. Suppose

lim
n→∞

an = p and lim
n→∞

bn = q.
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I’ll prove that
lim
n→∞

(an + bn) = p+ q.

Let ǫ > 0. Choose a number L so that if n > L, then

ǫ

2
> |an − p|.

Choose a number M so that if n > M , then

ǫ

2
> |bn − q|.

Then let N = max(L,M), so N is the larger of L and M . Then if n > N , I have both

ǫ

2
> |an − p| and

ǫ

2
> |bn − q|.

I add the inequalities and use the Triangle Inequality:

ǫ =
ǫ

2
+

ǫ

2
> |an − p|+ |bn − q|

≥ |(an − p) + (bn − q)|
= |(an + bn)− (p+ q)|

This proves that lim
n→∞

(an + bn) = p+ q.

The limit of a geometric sequence is determined entirely by its ratio r. The following result describes
the cases.

Proposition. Let {arn} be a geometric sequence.

(a) If r > 1, then arn → +∞ if a > 0, arn → −∞ if a < 0, and arn → 0 if a = 0.

(b) If r < −1, then arn diverges to ±∞ by oscillation.

(c) If r = 1, then arn = a for all n, and an → 1.

(d) If r = −1, then arn diverges to ±a by oscillation.

(e) If |r| < 1, then arn → 0.

Proof. I’ll sketch a proof that rn → 0 if 0 < r < 1 to illustrate the ideas.
Note that since r < 1,

rn+1 < rn.

That is, the sequence {rn} decreases. The terms are all positive, so they’re bounded below by 0. As
we’ll see below, a decreasing sequence that is bounded below must have a limit. So lim

n→∞

rn is defined.

Now
lim
n→∞

rn = lim
n→∞

r · rn−1 = r lim
n→∞

rn−1.

But
lim

n→∞

rn = lim
n→∞

rn−1.

Call this common limit L. Then the last equation says

L = r · L.

Since r 6= 0, this implies that L = 0.
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Here are some examples to illustrate the cases:

r > 1 : 2, 4, 8, 16, . . . → ∞.

r < −1 : −3, 9,−27, 81,−243 → ±∞.

r = 1 : 7, 7, 7, 7, 7, . . . → 7.

r = −1 : 5,−5, 5,−5, 5, . . . → ±5.

r =
2

3
:

2

3
,
4

9
,
8

27
,
16

81
,
32

243
, . . . → 0.

Here is a geometric sequence in which each term is
1

2
times the previous term:

1,
1

2
,

1

4
,

1

8
, . . . ,

1

2n
, . . . .

The terms appear to approach 0, so lim
n→∞

1

2n
= 0.

Here is a picture of the terms in this sequence.

1 1/2 1/4 1/8 1/16

. . .

Notice that the rectangles’ heights approach 0.

Here is a geometric sequence in which each term is
4

3
times the previous term:

1,
4

3
,

16

9
,

64

27
, . . . ,

4n

3n
, . . . .

The terms appear to increase indefinitely, so I’ll write lim
n→∞

4n

3n
= ∞.

Here is an interesting way to picture of the terms in this sequence. Take a segment and divide it into
thirds. Replace the middle third with a “bump” shaped like an equilateral triangle.

If the original segment had length 1, the new path with the triangular bump has length
4

3
.
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Now repeat the process with each of the four segments:

Since each segment’s length is multiplied by
4

3
, this path has total length

(

4

3

)2

=
16

9
.

Here’s the result of repeating the process two more times:

If you continue this process indefinitely, the limiting path must have infinite length, since lim
n→∞

4n

3n
= ∞.

The limiting path is an example of a self-similar fractal.

Example. Determine whether the sequence an =
2n2 − 3n+ 1

5− 7n2
for n ≥ 1 converges or diverges. If it

converges, find the limit.

lim
n→∞

2n2 − 3n+ 1

5− 7n2
= lim

n→∞

4n− 3

−14n
= lim

n→∞

4

−14
= −2

7
.

Hence, the series converges.

Example. Determine whether the sequence an =
2n + 7

5n − 3
for n ≥ 1 converges or diverges. If it converges,

find the limit.

Divide the top and bottom by 5n:

lim
n→∞

2n + 7

5n − 3
= lim

n→∞

2n

5n
+

7

5n

1− 3

5n

.

Now
2n

5n
=

(

2

5

)n

, and this goes to 0 because
2

5
< 1. Clearly

7

5n
and

3

5n
go to 0. The limit reduces to

lim
n→∞

2n

5n
+

7

5n

1− 3

5n

=
0 + 0

1− 0
= 0.
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The sequence converges to 0.

Example. (a) Determine whether the sequence an = (−1)n
n

n2 + 1
for n ≥ 1 converges or diverges. If it

converges, find the limit.

(b) Determine whether the sequence an = (−1)n
n

n+ 1
for n ≥ 1 converges or diverges. If it converges, find

the limit.

(a) Since (−1)n = ±1, I have

− n

n2 + 1
≤ (−1)n

n

n2 + 1
≤ n

n2 + 1
.

Now
lim
n→∞

− n

n2 + 1
= 0 and lim

n→∞

n

n2 + 1
= 0.

By the Squeezing Theorem,

lim
n→∞

(−1)n
n

n2 + 1
= 0.

(b) Note that

lim
n→∞

n

n+ 1
= 1.

Hence, when n is large and even, (−1)n
n

n+ 1
is close to 1, and when n is large and odd, (−1)n

n

n+ 1
is

close to −1. Therefore, the sequence diverges by oscillation.

Example. Determine whether the sequence an =
(sinn)2

n
converges or diverges. If it converges, find the

limit.

Note that
−1 ≤ sinn ≤ 1, so 0 ≤ (sinn)2 ≤ 1.

(The “0 ≤” comes from the fact that squares can’t be negative.) Divide by n:

0 ≤ (sinn)2

n
≤ 1

n
.

Now lim
n→∞

0 = 0 and lim
n→∞

1

n
= 0, so by the Squeezing Theorem,

lim
n→∞

(sinn)2

n
= 0.

The sequence converges to 0.

Example. A sequence defined by recursion:

a0 = 1, an+1 =
√
12 + an, n ≥ 1.

Here are the first few terms:

1,
√
13,

√

12 +
√
13,

√

12 +

√

12 +
√
13.
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Assume that lim
n→∞

an exists. What is it?

Let L = lim
n→∞

an. Then

lim
n→∞

an = L = lim
n→∞

an+1.

They’re equal because both represent the limit of sequences of terms with the “same infinite part”.
So

lim
n→∞

an+1 = lim
n→∞

√
12 + an =

√

12 + lim
n→∞

an.

Substitute L and solve the resulting equation:

L =
√
12 + L

L2 = 12 + L

L2 − L− 12 = 0

(L− 4)(L+ 3) = 0

This gives the solutions L = 4 and L = −3. Since its clear from the definition of the sequence that the
sequence has positive terms, the limit can’t be negative. Hence, L = 4.

Example. Start with a positive integer. If it is even, divide it by 2. If it is odd, multiply by 3 and add 1.
Continue forever. You obtain a sequence of numbers — a different sequence for each number you start with.

Show that the sequence of numbers produced by this procedure starting at 23 eventually leads to the
terms 4, 2, 1, which repeat after this.

23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . .

For example, 23 is odd, so the next number is 3 · 23 + 1 = 70. Then 70 is even, so the next number is
70

2
= 35.

If you try other starting numbers, you’ll find that you always seem to get stuck in the 1 − 2 − 4 loop.
The Collatz conjecture says that this always happens. It is known to be true for starting numbers (at
least) up to 3× 1012.

Definition. A sequence {an}:

(a) Increases if ai < aj whenever i < j.

(b) Decreases if ai > aj whenever i < j.

You can treat the terms of a sequence as values of a continuous function and use the first derivative to
determine whether a sequence increases or decreases.

Example. Determine whether the sequence given by an =
n+ 1

n+ 3
increases, decreases, or does neither.

Set f(x) =
x+ 1

x+ 3
. Then

f ′(x) =
(x+ 3)(1)− (x+ 1)(1)

(x+ 3)2
=

2

(x+ 3)2
.

Since f ′(x) > 0 for all x, the sequence increases.
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In some cases, it’s not possible to use the derivative to determine whether a sequence increases or
decreases. Here’s another approach that is often useful:

Proposition. Let {an} be a sequence with positive terms, and suppose that lim
n→∞

an+1

an
= L. Then:

(a) If L < 1, the terms eventually decrease.

(b) If L > 1, the terms eventually increase.

Proof. Here’s a sketch of the proof of (a). Suppose lim
n→∞

an+1

an
= L < 1. Choose a number r such that

L < r < 1. Then there is a number M such that if n > M ,

an+1

an
< r < 1, so an+1 < an.

The last inequality says that the next term (an+1) is less than the current term (an), which means that
the terms decrease. Similar reasoning applies if L > 1.

The reason I have to say the terms eventually decrease or increase is that the limit tells what the
sequence does for large values of n. For small values of n, the sequence may increase or decrease, and this
behavior won’t be detected by taking the limit.

Example. Determine whether the sequence given by an =
4n

n!
increases, decreases, or does neither.

I compute lim
n→∞

an+1

an
:

lim
n→∞

an+1

an
= lim

n→∞

4n+1

(n+ 1)!
4n

n!

= lim
n→∞

4n+1

(n+ 1)!
· n!
4n

= lim
n→∞

4n+1

4n
· n!

(n+ 1)!
=

lim
n→∞

4 · 1 · 2 · · · · · n
1 · 2 · · · · · n · (n+ 1)

= lim
n→∞

4 · 1

n+ 1
= 0.

Since is limit is less than 1, the terms of the sequence eventually decrease.

Definition. A sequence {an} is bounded if there is a number M such that |an| ≤ M for all n.

Pictorially, this means that all of the terms of the sequence lie between the lines y = −M and y = M :

-M

M

I can also say a sequence is bounded if there are numbers C and D such that C ≤ an ≤ D for all
n. This definition is equivalent to the first definition. For if a sequence satisfies |an| ≤ M for all n, then
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−M ≤ an ≤ M for all n (so I can take C = −M and D = M in the second definition). On the other hand,
if C ≤ an ≤ D for all n, then |an| ≤ max(|C|, |D|), where max(|C|, |D|) is the larger of the numbers |C| and
|D| (so I can take M = max(|C|, |D|) in the first definition).

Example. Prove that the sequence an = 5 + 2 sinn is bounded.

Since −1 ≤ sinn ≤ 1,

−2 ≤ 2 sinn ≤ 2, so 3 ≤ 5 + 2 sinn ≤ 7.

Thus, the sequence is bounded according to the second definition. Also, −7 ≤ 5+2 sinn ≤ 7, and hence
|5 + 2 sinn| ≤ 7. Therefore, the sequence is bounded according to the first definition.

Here’s another way of telling that a sequence is bounded:

Proposition. If the terms of a sequence approach a (finite) limit, then the sequence is bounded.

Proof. Suppose that lim
n→∞

an = L. By definition, this means that I can make an as close to L as I want by

making n large enough. Suppose, for instance, I know that an is within 0.1 of L once n is greater than some
number p. (I picked the number 0.1 at random.) Thus, all the terms after ap are within 0.1 of L:

L− 0.1 < ap+1, ap+2, . . . < L+ 0.1.

What about the first p terms a1, a2, . . . , ap? Since there are a finite number of these terms, there must
be a largest value and a smallest value among them. Suppose that the smallest value is A and the largest
value is B. Thus,

A ≤ a1, a2, . . . , ap ≤ B.

Then if C = min(A,L − 0.1) is the smaller of A and L − 0.1 and D = max(B,L + 0.1) is the larger of
B and L+ 0.1, I must have

C ≤ a1, a2, . . . , ap, ap+1, ap+2, . . . D.

Therefore, the sequence is bounded.

Example. Prove that the sequence an =
4n2

8n2 + 3
is bounded.

lim
n→∞

4n2

8n2 + 3
=

1

2
.

Therefore, the sequence is bounded.

There is an important theorem which combines the ideas of increasing or decreasing and boundedness.
It says that an increasing sequence that is bounded above has a limit, and a decreasing sequence that is
bounded below has a limit.

Some of the material which leads up to this result is a bit technical, so you might want to skip the proofs
if you find them heavy-going. The important thing is the last theorem in this section, which we’ll often use
in our discussion of infinite series.

Definition. Let S be a set of real numbers.

(a) An upper bound for S is a number M such that M ≥ x for every number x in S. A set which has
an upper bound is bounded above.
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(b) A lower bound for S is a number L such that L ≤ x for every number x in S. A set which has a
lower bound is bounded below.

A sequence is bounded in the sense we discussed earlier if it’s bounded above and bounded below.

For instance, consider the set

S =

{

1

2
,
1

4
,
1

8
, . . .

1

2n
, . . .

}

.

Then 1 is an upper bound for S. So is 2. So is π. There are infinitely many upper bounds for S.
0 is a lower bound for S. So is −17. There are infinitely many lower bounds for S.
Thus, a set can have many upper bounds or lower bounds.
Consider the set

S = {1, 2, 3, 4, . . . n, . . .}.
S does not have an upper bound: There’s no number which is greater than or equal to all the numbers

in S. But 0 is a lower bound for S. So is −151.
Thus, a set does not have to have an upper bound or a lower bound.

Definition. Let S be a set.

(a) A number M is the least upper bound for S if M is an upper bound for S, and M ≤ M ′ for every
upper bound M ′ of S.

(b) A number L is the greatest lower bound for S if L is an lower bound for S, and L′ ≤ L for every
lower bound L′ of S.

We’ve seen that a set can have many upper bounds. The least upper bound is the smallest upper bound.

least upper bound

upper bound
upper bound

upper bound

Let’s consider again the set

S =

{

1

2
,
1

4
,
1

8
, . . .

1

2n
, . . .

}

.

We saw that 1, 2, and π are upper bounds for S. The least upper bound is
1

2
. In this case, the least

upper bound is an element of the set.
Consider the set

T =

{

1

2
,
2

3
,
3

4
, . . .

n

n+ 1
, . . .

}

.

Notice that lim
n→∞

n

n+ 1
= 1. The least upper bound of the set T is 1. It is not an element of T .

We’ve already seen an example of a set with no upper bound:

S = {1, 2, 3, 4, . . . n, . . .}.

Since this set has no upper bound, it can’t have a least upper bound. There is an important circumstance
when a set is guaranteed to have a least upper bound.
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Axiom. (Least Upper Bound Axiom) Let S be a nonempty set of real numbers that is bounded above.
Then S has a least upper bound.

This is an axiom for the real numbers: that is, one of the assumptions which characterize the real
numbers. Being an assumption, there’s no question of proving it. You’d see the axioms for the real numbers
in a course in analysis.

For a course in calculus, the following result is one of the most important consequences of this axiom.
It will be used in our discussion of infinite series.

Theorem. (a) A sequence of numbers that increases and is bounded above has a limit.

(b) A sequence of numbers that decreases and is bounded below has a limit.

The following picture makes the theorem plausible:

least upper bound

Since the sequence is bounded above, it has a least upper bound. It appear that, since the terms
increase, they should “pile up” at the least upper bound, and therefore have a limit.

Proof. I’ll sketch the proof of (a) by way of example.
Suppose {an}∞n=1 is an increasing sequence, and suppose that it’s bounded above. Since it’s bounded

above, the Least Upper Bound Axiom implies that it has an upper bound M . I will show that

lim
n→∞

an = M.

Let ǫ > 0, and consider the number M − ǫ. Suppose

an ≤ M − ǫ for all n.

Tthen M − ǫ is an upper bound for {an}. But M − ǫ < M , and M is supposed to be the smallest upper
bound for {an}. This is impossible. Hence, I can’t have an ≤ M − ǫ for all n.

This means that for some index k I have ak > M − ǫ. The the sequence increases, so

· · · ak+3 > ak+2 > ak+1 > ak > M − ǫ.

In other words, an > M − ǫ for all n ≥ k.
By the definition of the limit of a sequence, I have lim

n→∞

an = M .
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