Taylor Series

The Taylor series for $f(x)$ at $x=c$ is

$$
f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n} .
$$

(By convention, $f^{(0)}=f$.) When $c=0$, the series is called a Maclaurin series.
You can construct the series on the right provided that f is infinitely differentiable on an interval containing c. You already know how to determine the interval of convergence of the series. However, the fact that the series converges at x does not imply that the series converges to $f(x)$.

As an example, consider the function

$$
f(x)=\left\{\begin{array}{ll}
e^{-1 / x^{2}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} .\right.
$$

It is infinitely differentiable everywhere. In particular, all the derivatives of f at 0 vanish, and the Maclaurin series for f is identically 0 .

Hence, the Maclaurin series for f converges for all x, but only converges to $f(x)$ at $x=0$.
The following result ([1], page 418) gives a sufficient condition for the Taylor series of a function to converge to the function:

Theorem. Let $f(x)$ be infinitely differentiable on $a \leq x \leq b$, and let $a \leq c \leq b$. Suppose there is a constant M such that $\left|f^{(n)}(x)\right| \leq M$ for all $n \geq 1$, and for all x in $N \cap[a, b]$, where N is a neighborhood of c. Then for all $x \in N \cap[a, b]$,

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

In other words, under reasonable conditions:

1. You can construct a Taylor series by computing the derivatives of f.
2. The series will converge to f on an interval around the expansion point. (You can find the interval of convergence as usual.)

It's tedious to have to compute lots of derivatives, and in many cases you can derive a series from another known series. Here are the series expansions for several important functions:

$$
\begin{array}{ccr}
\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}=1+u+u^{2}+\cdots+u^{n}+\cdots & -1<u<1 \\
e^{u}=\sum_{n=0}^{\infty} \frac{u^{n}}{n!}=1+u+\frac{u^{2}}{2!}+\cdots+\frac{u^{n}}{n!}+\cdots & -\infty<u<+\infty \\
\cos u=\sum_{n=0}^{\infty}(-1)^{n} \frac{u^{2 n}}{(2 n)!}=1-\frac{u^{2}}{2!}+\frac{u^{4}}{4!}-\cdots+(-1)^{n} \frac{u^{2 n}}{(2 n)!}+\cdots & -\infty<u<+\infty \\
\sin u=\sum_{n=0}^{\infty}(-1)^{n} \frac{u^{2 n+1}}{(2 n+1)!}=u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\cdots+(-1)^{n} \frac{u^{2 n+1}}{(2 n+1)!}+\cdots & -\infty<u<+\infty \\
\ln (1+u)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{u^{n}}{n}=u-\frac{u^{2}}{2}+\frac{u^{3}}{3}-\cdots+(-1)^{n+1} \frac{u^{n}}{n}+\cdots & -1<u \leq 1 \\
(1+u)^{a} & =1+\sum_{n=1}^{\infty} \frac{a(a-1) \cdots(a-n+1)}{n!} u^{n} & -1<u<1
\end{array}
$$

Example. Find the Taylor series for $\frac{1}{x+3}$ at $a=2$. What is its interval of convergence?
I want things to come out in powers of $x-2$, so I'll write the function in terms of $x-2$:

$$
\begin{aligned}
\frac{1}{x+3} & =\frac{1}{\cdots+(x-2)} \quad \text { (Make the } x-2 \text { first) } \\
& \left.=\frac{1}{5+(x-2)} \quad \text { (I need } 5, \text { because } 5-2=3\right)
\end{aligned}
$$

I'll use the series for $\frac{1}{1-u}$. To do this, I need $1-u$ on the bottom. I make a " 1 " by factoring 5 out of the terms on the bottom, then I make a "-" by writing the "+" as " $-(-)$ ":

$$
\frac{1}{5+(x-2)}=\frac{1}{5} \cdot \frac{1}{1+\frac{x-2}{5}}=\frac{1}{5} \cdot \frac{1}{1-\left(-\frac{x-2}{5}\right)}
$$

Let $u=-\frac{x-2}{5}$ in the series for $\frac{1}{1-u}$. Then

$$
\frac{1}{1-\left(-\frac{x-2}{5}\right)}=1-\frac{x-2}{5}+\left(\frac{x-2}{5}\right)^{2}-\left(\frac{x-2}{5}\right)^{3}+\cdots
$$

Hence,

$$
\frac{1}{x+3}=\frac{1}{5} \cdot\left[1-\frac{x-2}{5}+\left(\frac{x-2}{5}\right)^{2}-\left(\frac{x-2}{5}\right)^{3}+\cdots\right] .
$$

The u-series converges for $-1<u<1$, so the x-series converges for $-1<-\frac{x-2}{5}<1$, or $-3<x<7$. \square

Example. Find the Taylor series for $\frac{1}{7-x}$ at $a=-3$. What is its interval of convergence?
Since I'm expanding at $a=-3$, I need powers of $x+3$:

$$
\begin{aligned}
\frac{1}{7-x} & =\frac{1}{10-(x+3)} \\
& =\frac{1}{10} \frac{1}{1-\frac{1}{10}(x+3)}
\end{aligned}
$$

I let $u=\frac{1}{10}(x+3)$ in the series for $\frac{1}{1-u}$:

$$
\frac{1}{10} \frac{1}{1-\frac{1}{10}(x+3)}=\frac{1}{10}\left(1+\frac{1}{10}(x+3)+\frac{1}{10^{2}}(x+3)^{2}+\frac{1}{10^{3}}(x+3)^{3}+\cdots\right) .
$$

In summation form, this is $\frac{1}{10} \sum_{n=0}^{\infty} \frac{1}{10^{n}}(x+3)^{n}$.

Find the interval of convergence:

$$
\begin{aligned}
-1 & <u<1 \\
-1 & <\frac{1}{10}(x+3)<1 \\
-10 & <x+3<10 \\
-13 & <x<7
\end{aligned}
$$

Example. Find the Taylor series at $c=1$ for $e^{5 x}$.
I need powers of $x-1$.

$$
e^{5 x}=e^{5(x-1)+5}=e^{5(x-1)} \cdot e^{5}=e^{5}\left(1+5(x-1)+\frac{5^{2}(x-1)^{2}}{2!}+\frac{5^{3}(x-1)^{3}}{3!}+\cdots\right)
$$

To get this, I let $u=5(x-1)$ in the series for e^{u}.
For the interval of convergence:

$$
\begin{aligned}
& -\infty<u<\infty \\
& -\infty<5(x-1)<\infty \\
& -\infty<x-1<\infty \\
& -\infty<x<\infty
\end{aligned}
$$

Example. Find the Taylor series for $\sin x$ at $c=\frac{\pi}{2}$.
I need powers of $x-\frac{\pi}{2}$, so

$$
\sin x=\sin \left[\left(x-\frac{\pi}{2}\right)+\frac{\pi}{2}\right] .
$$

Next, I'll use the angle addition formula for sine:

$$
\sin (a+b)=\sin a \cos b+\sin b \cos a
$$

I set $a=x-\frac{\pi}{2}$ and $b=\frac{\pi}{2}$. Since $\cos \frac{\pi}{2}=0$ and $\sin \frac{\pi}{2}=1$, I get

$$
\sin \left[\left(x-\frac{\pi}{2}\right)+\frac{\pi}{2}\right]=\cos \left(x-\frac{\pi}{2}\right)=1-\frac{1}{2!}\left(x-\frac{\pi}{2}\right)^{2}+\frac{1}{4!}\left(x-\frac{\pi}{2}\right)^{4}-\frac{1}{6!}\left(x-\frac{\pi}{2}\right)^{6}+\cdots
$$

Example. Find the Taylor series for $\ln x$ at $a=1$. What is its interval of convergence?
Use

$$
\ln (1+u)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{u^{n}}{n}=u-\frac{u^{2}}{2}+\frac{u^{3}}{3}-\cdots+(-1)^{n+1} \frac{u^{n}}{n}+\cdots
$$

I'm expanding at $a=1$, so I want the result to come out in powers of $x-1$. This is easy - just set $u=x-1$:

$$
\ln x=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\cdots+(-1)^{n+1} \frac{1}{n}(x-1)^{n}+\cdots .
$$

The u-series converges for $-1<u \leq 1$, so the x-series converges for $-1<x-1 \leq 1$, or $0<x \leq 2$.

Example. The quantity $\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}$ occurs in special relativity. $(v$ is the velocity of an object, and c is the speed of light.) Approximate $\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}$ using the first two nonzero terms of the binomial series.

$$
(1+u)^{a}=1+a u+\frac{a(a-1)}{2!} u^{2}+\cdots,
$$

So for $a=-\frac{1}{2}$,

$$
(1+u)^{-1 / 2}=1-\frac{1}{2} u+\frac{3}{8} u^{2}-\cdots .
$$

Take $u=-\frac{v^{2}}{c^{2}}$:

$$
\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}=1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{3}{8} \frac{v^{4}}{c^{4}}+\cdots \approx 1+\frac{1}{2} \frac{v^{2}}{c^{2}} .
$$

The approximation is good as long as v is small compared to c.

Example. Find the Taylor series for $\frac{x}{2+x}$ at $a=-1$.
Since I'm expanding at $a=-1$, the answer must come out in terms of powers of $x+1$.
Start with the function you're trying to expand. To get $x+1$'s in the answer, write the given function in terms of $x+1$:

$$
\frac{x}{2+x}=\frac{(x+1)-1}{1+(x+1)} .
$$

(Notice that the work has to be legal algebra.)
I'll break up the fraction and do the pieces separately.

$$
\frac{(x+1)-1}{1+(x+1)}=\frac{x+1}{1+(x+1)}-\frac{1}{1+(x+1)} .
$$

I want to "match" each piece against the standard series $\frac{1}{1-u}$. Here's the first piece:

$$
\frac{x+1}{1+(x+1)}=(x+1) \frac{1}{1-[-(x+1)]} .
$$

Expand $\frac{1}{1-[-(x+1)]}$ by setting $u=-(x+1)$ in $\frac{1}{1-u}$:
$(x+1) \frac{1}{1-[-(x+1)]}=(x+1) \cdot\left(1-(x+1)+(x+1)^{2}-(x+1)^{3}+\cdots\right)=(x+1)-(x+1)^{2}+(x+1)^{3}-\cdots$.
Here's the second piece:

$$
\frac{1}{1+(x+1)}=\frac{1}{1-[-(x+1)]}=1-(x+1)+(x+1)^{2}-(x+1)^{3}+\cdots .
$$

Put the two pieces together:

$$
\left[(x+1)-(x+1)^{2}+(x+1)^{3}-\cdots\right]-\left[1-(x+1)+(x+1)^{2}-(x+1)^{3}+\cdots\right]=
$$

$$
\begin{gathered}
(x+1)-(x+1)^{2}+(x+1)^{3}-\cdots \\
-1+(x+1)-(x+1)^{2}+(x+1)^{3}-\cdots \\
-1+2(x+1)-2(x+1)^{2}+2(x+1)^{3}-\cdots
\end{gathered}
$$

That is,

$$
\frac{x}{2+x}=-1+2(x+1)-2(x+1)^{2}+2(x+1)^{3}-\cdots
$$

Example. What is the Maclaurin series for $f(x)=7 x^{2}-3 x+13$? What is the Taylor series for $f(x)=$ $7 x^{2}-3 x+13$ at $a=-1$?

The Maclaurin series for a polynomial is the polynomial: $f(x)=7 x^{2}-3 x+13$.
To obtain the Taylor expansion at $a=-1$, write the function in terms of $x+1$:

$$
7 x^{2}-3 x+13=7(x+1)^{2}-17 x+6=7(x+1)^{2}-17(x+1)+23
$$

Example. Find $f^{(100)}(0)$ for $f(x)=\frac{1}{3-x}$.
The series for $\frac{1}{3-x}$ at $c=0$ is

$$
\begin{gathered}
\frac{1}{3-x}=\frac{1}{3} \cdot \frac{1}{1-\frac{x}{3}}=\frac{1}{3} \cdot\left(1+\frac{x}{3}+\frac{x^{2}}{3^{2}}+\cdots+\frac{x^{n}}{3^{n}}+\cdots\right)= \\
\frac{1}{3}+\frac{x}{3^{2}}+\frac{x^{2}}{3^{3}}+\cdots+\frac{x^{n}}{3^{n+1}}+\cdots
\end{gathered}
$$

The $100^{\text {th }}$ degree term is $\frac{x^{100}}{3^{101}}$. On the other hand, Taylor's formula says that the $100^{\text {th }}$ degree term is $\frac{f^{(100)}(0)}{100!} x^{100}$. Equating the coefficients, I get

$$
\begin{aligned}
\frac{1}{3^{101}} & =\frac{f^{(100)}(0)}{100!} \\
f^{(100)}(0) & =\frac{100!}{3^{101}}
\end{aligned}
$$

While you can often use known series to find Taylor series, it's sometimes necessary to find a series using Taylor's formula. (In fact, that's where the "known series" come from.)

Example. Find the first four nonzero terms and the general term of the Taylor series for $f(x)=e^{x}$ at $a=0$ and at $a=1$ by computing the derivatives of f.

$$
f(x)=e^{x}, \quad f^{\prime}(x)=e^{x}, \quad \text { and in general } \quad f^{(n)}(x)=e^{x}
$$

For $a=0, f^{(n)}(0)=e^{0}=1$ for all n. The Taylor series at $a=0$ is

$$
f(x)=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}+\cdots .
$$

For $a=1, f^{(n)}(1)=e^{1}=e$ for all n. The Taylor series at $a=1$ is

$$
f(x)=e+e(x-1)+\frac{e}{2!}(x-1)^{2}+\frac{3}{3!}(x-1)^{3}+\cdots+\frac{1}{n!}(x-1)^{n}+\cdots .
$$

If you truncate the series expanded at c after the $n^{\text {th }}$-degree term, what's left is the $n^{\text {th }}$-degree Taylor polynomial $p_{n}(x ; c)$. For example, the third degree polynomial of e^{x} at $a=0$ is

$$
p_{3}(x ; 0)=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}
$$

Note that the " n " here refers to the largest power of x, not the number of terms. For example, the Taylor series for $\frac{1}{1-x^{2}}$ at $a=0$ is

$$
\frac{1}{1-x^{2}}=1+x^{2}+x^{4}+\cdots+x^{2 n}+\cdots
$$

The $2^{\text {nd }}$ degree Taylor polynomial and the $3^{\text {rd }}$ degree Taylor polynomial are equal:

$$
p_{2}(x ; 0)=p_{3}(x ; 0)=1+x^{2}
$$

Example. Find the $3^{\text {rd }}$ degree Taylor polynomial for $f(x)=\tan x$ at $x=\frac{\pi}{4}$.
$f(x)=\tan x, \quad f^{\prime}(x)=(\sec x)^{2}, \quad f^{\prime \prime}(x)=2(\sec x)^{2} \tan x, \quad f^{\prime \prime \prime}(x)=2(\sec x)^{4}+4(\sec x)^{2}(\tan x)^{2}$.
Thus,

$$
f\left(\frac{\pi}{4}\right)=1, \quad f^{\prime}\left(\frac{\pi}{4}\right)=2, \quad f^{\prime \prime}\left(\frac{\pi}{4}\right)=4, \quad f^{\prime \prime \prime}\left(\frac{\pi}{4}\right)=16
$$

The $3^{\text {rd }}$ degree Taylor polynomial is

$$
p_{3}\left(x ; \frac{\pi}{4}\right)=1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}+\frac{8}{3}\left(x-\frac{\pi}{4}\right)^{3}
$$

Example. Suppose

$$
f(4)=7, \quad f^{\prime}(4)=-3, \quad f^{\prime \prime}(4)=4, \quad f^{\prime \prime \prime}(4)=12
$$

Use the $3^{\text {rd }}$ degree Taylor polynomial for f at $c=4$ to approximate $f(4.2)$.
I have

$$
p_{3}(x ; 4)=7-3(x-4)+\frac{4}{2!}(x-4)^{2}+\frac{12}{3!}(x-4)^{3}=7-3(x-4)+2(x-4)^{2}+2(x-4)^{3}
$$

Plug $x=4.2$ in:

$$
f(4.2) \approx 7-3(4.2-4)+2(4.2-4)^{2}+2(4.2-4)^{3}=6.496
$$

It's also possible to construct power series by integrating or differentiating other power series. A power series may be integrated or differentiated term-by-term in the interior of its interval of convergence. (You will need to check convergence at the endpoints separately.)
Example. (a) Find the Taylor series at $c=0$ for $\frac{1}{8+x}$.
(b) Find the Taylor series at $c=0$ for $\frac{1}{(8+x)^{2}}$.
(a)

$$
\begin{gathered}
\frac{1}{8+x}=\frac{1}{8} \frac{1}{1+\frac{x}{8}}=\frac{1}{8} \frac{1}{1-\left(-\frac{x}{8}\right)}= \\
\frac{1}{8}\left(1-\frac{x}{8}+\frac{x^{2}}{64}-\frac{x^{3}}{512}+\frac{x^{4}}{4096}-\cdots\right)
\end{gathered}
$$

(b) Notice that

$$
\frac{d}{d x} \frac{1}{8+x}=-\frac{1}{(8+x)^{2}}
$$

Hence,

$$
\begin{gathered}
\frac{1}{(8+x)^{2}}=-\frac{d}{d x} \frac{1}{8+x}=-\frac{d}{d x} \frac{1}{8}\left(1-\frac{x}{8}+\frac{x^{2}}{64}-\frac{x^{3}}{512}+\frac{x^{4}}{4096}-\cdots\right)= \\
-\frac{1}{8}\left(-\frac{1}{8}+\frac{x}{32}-\frac{3 x^{2}}{512}+\frac{x^{3}}{1024}-\cdots\right) .
\end{gathered}
$$

Example. (a) Find the Taylor series at $c=0$ for $\frac{1}{1+x}$.
(b) Use the series in (a) to find the series for $\ln (1+u)$ expanded at $c=0$.
(a) Put $u=-x$ in the series for $\frac{1}{1-u}$ to obtain

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots
$$

It converges for $-1<x<1$.
(b) Integrate the series in (a) from 0 to u :

$$
\ln (1+u)=\int_{0}^{u}\left(1-x+x^{2}-x^{3}+\cdots\right) d x=u-\frac{u^{2}}{2}+\frac{u^{3}}{3}-\frac{u^{4}}{4}+\cdots
$$

This series will converge for $-1<u<1$. The left side blows up at $u=-1$. On the other hand, if $u=1$,

$$
\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

The right side does converges (by the Alternating Series Test), so the $\ln (1+u)$ series converges for $-1<u \leq 1$.

Example. Find the Taylor series for $\ln (5-x)$ at $a=2$.

First, note that

$$
\int_{2}^{x} \frac{1}{5-t} d t=[-\ln (5-t)]_{2}^{x}=-\ln (5-x)+\ln 3, \quad \text { so } \quad \ln (5-x)=\ln 3-\int_{2}^{x} \frac{1}{5-t} d t
$$

I integrated from 2 to x because I want the expansion at $a=2$.
Now find the series at $a=2$ for $\frac{1}{5-t}$:

$$
\frac{1}{5-t}=\frac{1}{3-(t-2)}=\frac{1}{3} \frac{1}{1-\frac{t-2}{3}}=\frac{1}{3} \sum_{n=0}^{\infty} \frac{(t-2)^{n}}{3^{n}}
$$

Plug this series back into the integral and integrate term-by-term:

$$
\begin{gathered}
\ln (5-x)=\ln 3-\int_{2}^{x} \frac{1}{5-t} d t=\ln 3-\frac{1}{3} \int_{2}^{x} \sum_{n=0}^{\infty} \frac{(t-2)^{n}}{3^{n}} d t=\ln 3-\frac{1}{3} \sum_{n=0}^{\infty}\left[\frac{(t-2)^{n+1}}{3^{n}(n+1)}\right]_{2}^{x}= \\
\ln 3-\frac{1}{3} \sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{3^{n}(n+1)}=\ln 3-\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{3^{n+1}(n+1)} .
\end{gathered}
$$

Example. (a) Construct the Taylor series at $c=0$ for $\frac{1}{1+t^{2}}$.
(b) Use the series in (a) to construct the Taylor series at $c=0$ for $\tan ^{-1} x$.
(c) Use the series in (b) to obtain a series for π.
(a) I need powers of t, so

$$
\frac{1}{1+t^{2}}=\frac{1}{1-\left(-t^{2}\right)}=1-t^{2}+t^{4}-t^{6}+\cdots+(-1)^{n} t^{2 n}+\cdots
$$

(b) Note that

$$
\int_{0}^{x} \frac{1}{1+t^{2}} d t=\left[\tan ^{-1} t\right]_{0}^{x}=\tan ^{-1} x
$$

Therefore,

$$
\begin{gathered}
\tan ^{-1} x=\int_{0}^{x} \frac{1}{1+t^{2}} d t=\int_{0}^{x}\left(1-t^{2}+t^{4}-t^{6}+\cdots\right) d t= \\
{\left[t-\frac{1}{3} t^{3}+\frac{1}{5} t^{5}-\frac{1}{7} t^{7}+\cdots\right]_{0}^{x}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots}
\end{gathered}
$$

(c) Plug $x=1$ into the series in (b), using the fact that $\tan ^{-1} 1=\frac{\pi}{4}$:

$$
\begin{aligned}
\tan ^{-1} 1 & =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \\
\frac{\pi}{4} & =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \\
\pi & =4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\cdots
\end{aligned}
$$

Think of a Taylor series as a "replacement" for its function. For example, you can often use a Taylor series to compute a limit or an integral by replacing a function with its series.

Example. (a) Find the first 4 nonzero terms of the Taylor series at $c=0$ for $\ln \left(1+x^{3}\right)$.
(b) Use the series in (a) to guess the value of $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{3}\right)}{x^{3}}$.
(a) Let $u=x^{3}$ in the series for $\ln (1+u)$:

$$
\ln \left(1+x^{3}\right)=x^{3}-\frac{1}{2} x^{6}+\frac{1}{3} x^{9}+\frac{1}{4} x^{12}-\cdots
$$

(b) Plug the series from (a) into the limit:

$$
\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{3}\right)}{x^{3}}=\lim _{x \rightarrow 0} \frac{1}{x^{3}}\left(x^{3}-\frac{1}{2} x^{6}+\frac{1}{3} x^{9}+\frac{1}{4} x^{12}-\cdots\right)=\lim _{x \rightarrow 0}\left(1-\frac{1}{2} x^{3}+\frac{1}{3} x^{6}+\frac{1}{4} x^{9}-\cdots\right)=1
$$

Example. (a) Construct the Taylor series at $c=0$ for $x^{2} e^{-x^{2}}$. (Write out at least the first 4 nonzero terms.)
(b) Use the first 3 terms of the series in (a) to approximate $\int_{0}^{1} x^{2} e^{-x^{2}} d x$.
(c) Use the Alternating Series error estimate to estimate the error in (b).
(a) I set $u=-x^{2}$ in the series for e^{u} :

$$
e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\cdots .
$$

Multiply by x^{2} :

$$
x^{2} e^{-x^{2}}=x^{2}-x^{4}+\frac{1}{2} x^{6}-\frac{1}{6} x^{8}+\frac{1}{24} x^{10}-\cdots .
$$

(b)

$$
\int_{0}^{1} x^{2} e^{-x^{2}} d x \approx \int_{0}^{1}\left(x^{2}-x^{4}+\frac{1}{2} x^{6}\right) d x=\left[\frac{1}{3} x^{3}-\frac{1}{5} x^{5}+\frac{1}{14} x^{7}\right]_{0}^{1}=\frac{43}{210}=0.20476 \ldots
$$

(c) The Alternating Series error estimate says that the error is less than the next term. So I take the next term in the series in (a) and integrate:

$$
\int_{0}^{1} \frac{1}{6} x^{8} d x=\left[\frac{1}{54} x^{9}\right]_{0}^{1}=\frac{1}{54}
$$

The error in the estimate in (b) is no greater than $\frac{1}{54}=0.01851 \ldots$.
[1] Tom M. Apostol, Mathematical Analysis. Reading, Massachusetts: Addision-Wesley Publishing Company, Inc., 1957.

