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Taylor Series

The Taylor series for f(x) at x = c is

f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · · =

∞
∑

n=0

f (n)(c)

n!
(x− c)n.

(By convention, f (0) = f .) When c = 0, the series is called a Maclaurin series.
You can construct the series on the right provided that f is infinitely differentiable on an interval

containing c. You already know how to determine the interval of convergence of the series. However, the
fact that the series converges at x does not imply that the series converges to f(x).

As an example, consider the function

f(x) =

{

e−1/x2

if x 6= 0
0 if x = 0

.

It is infinitely differentiable everywhere. In particular, all the derivatives of f at 0 vanish, and the
Maclaurin series for f is identically 0.

Hence, the Maclaurin series for f converges for all x, but only converges to f(x) at x = 0.

The following result ([1], page 418) gives a sufficient condition for the Taylor series of a function to
converge to the function:

Theorem. Let f(x) be infinitely differentiable on a ≤ x ≤ b, and let a ≤ c ≤ b. Suppose there is a constant
M such that |f (n)(x)| ≤ M for all n ≥ 1, and for all x in N ∩ [a, b], where N is a neighborhood of c. Then
for all x ∈ N ∩ [a, b],

f(x) =

∞
∑

n=0

f (n)(c)

n!
(x − c)n.

In other words, under reasonable conditions:

1. You can construct a Taylor series by computing the derivatives of f .

2. The series will converge to f on an interval around the expansion point. (You can find the interval
of convergence as usual.)

It’s tedious to have to compute lots of derivatives, and in many cases you can derive a series from
another known series. Here are the series expansions for several important functions:

1

1− u
=

∞
∑

n=0

un = 1 + u+ u2 + · · ·+ un + · · · −1 < u < 1

eu =

∞
∑

n=0

un

n!
= 1 + u+

u2

2!
+ · · ·+

un

n!
+ · · · −∞ < u < +∞

cosu =

∞
∑

n=0

(−1)n
u2n

(2n)!
= 1−

u2

2!
+

u4

4!
− · · ·+ (−1)n

u2n

(2n)!
+ · · · −∞ < u < +∞

sinu =

∞
∑

n=0

(−1)n
u2n+1

(2n+ 1)!
= u−

u3

3!
+

u5

5!
− · · ·+ (−1)n

u2n+1

(2n+ 1)!
+ · · · −∞ < u < +∞

ln(1 + u) =
∞
∑

n=1

(−1)n+1u
n

n
= u−

u2

2
+

u3

3
− · · ·+ (−1)n+1u

n

n
+ · · · −1 < u ≤ 1

(1 + u)a = 1 +

∞
∑

n=1

a(a− 1) · · · (a− n+ 1)

n!
un −1 < u < 1
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Example. Find the Taylor series for
1

x+ 3
at a = 2. What is its interval of convergence?

I want things to come out in powers of x− 2, so I’ll write the function in terms of x− 2:

1

x+ 3
=

1

. . .+ (x− 2)
(Make the x− 2 first)

=
1

5 + (x− 2)
(I need 5, because 5− 2 = 3)

I’ll use the series for
1

1− u
. To do this, I need 1− u on the bottom. I make a “1” by factoring 5 out of

the terms on the bottom, then I make a “−” by writing the “+” as “−(−)”:

1

5 + (x− 2)
=

1

5
·

1

1 +
x− 2

5

=
1

5
·

1

1−

(

−
x− 2

5

) .

Let u = −
x− 2

5
in the series for

1

1− u
. Then

1

1−

(

−
x− 2

5

) = 1−
x− 2

5
+

(

x− 2

5

)2

−

(

x− 2

5

)3

+ · · · .

Hence,

1

x+ 3
=

1

5
·

[

1−
x− 2

5
+

(

x− 2

5

)2

−

(

x− 2

5

)3

+ · · ·

]

.

The u-series converges for −1 < u < 1, so the x-series converges for −1 < −
x− 2

5
< 1, or −3 < x < 7.

Example. Find the Taylor series for
1

7− x
at a = −3. What is its interval of convergence?

Since I’m expanding at a = −3, I need powers of x+ 3:

1

7− x
=

1

10− (x+ 3)

=
1

10

1

1−
1

10
(x + 3)

I let u =
1

10
(x+ 3) in the series for

1

1− u
:

1

10

1

1−
1

10
(x+ 3)

=
1

10

(

1 +
1

10
(x+ 3) +

1

102
(x+ 3)2 +

1

103
(x+ 3)3 + · · ·

)

.

In summation form, this is
1

10

∞
∑

n=0

1

10n
(x+ 3)n.
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Find the interval of convergence:

−1 < u < 1

−1 <
1

10
(x+ 3) < 1

−10 < x+ 3 < 10

−13 < x < 7

Example. Find the Taylor series at c = 1 for e5x.

I need powers of x− 1.

e5x = e5(x−1)+5 = e5(x−1) · e5 = e5
(

1 + 5(x− 1) +
52(x− 1)2

2!
+

53(x − 1)3

3!
+ · · ·

)

.

To get this, I let u = 5(x− 1) in the series for eu.
For the interval of convergence:

−∞ < u < ∞

−∞ < 5(x− 1) < ∞

−∞ < x− 1 < ∞

−∞ < x < ∞

Example. Find the Taylor series for sinx at c =
π

2
.

I need powers of x−
π

2
, so

sinx = sin
[(

x−
π

2

)

+
π

2

]

.

Next, I’ll use the angle addition formula for sine:

sin(a+ b) = sina cos b+ sin b cos a.

I set a = x−
π

2
and b =

π

2
. Since cos

π

2
= 0 and sin

π

2
= 1, I get

sin
[(

x−
π

2

)

+
π

2

]

= cos
(

x−
π

2

)

= 1−
1

2!

(

x−
π

2

)2

+
1

4!

(

x−
π

2

)4

−
1

6!

(

x−
π

2

)6

+ · · · .

Example. Find the Taylor series for lnx at a = 1. What is its interval of convergence?

Use

ln(1 + u) =
∞
∑

n=1

(−1)n+1u
n

n
= u−

u2

2
+

u3

3
− · · ·+ (−1)n+1u

n

n
+ · · · .

I’m expanding at a = 1, so I want the result to come out in powers of x − 1. This is easy — just set
u = x− 1:

lnx = (x − 1)−
1

2
(x − 1)2 +

1

3
(x− 1)3 + · · ·+ (−1)n+1 1

n
(x− 1)n + · · · .

The u-series converges for −1 < u ≤ 1, so the x-series converges for −1 < x− 1 ≤ 1, or 0 < x ≤ 2.
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Example. The quantity

(

1−
v2

c2

)−1/2

occurs in special relativity. (v is the velocity of an object, and c is

the speed of light.) Approximate

(

1−
v2

c2

)−1/2

using the first two nonzero terms of the binomial series.

(1 + u)a = 1 + au+
a(a− 1)

2!
u2 + · · · ,

So for a = −
1

2
,

(1 + u)−1/2 = 1−
1

2
u+

3

8
u2 − · · · .

Take u = −
v2

c2
:

(

1−
v2

c2

)−1/2

= 1 +
1

2

v2

c2
+

3

8

v4

c4
+ · · · ≈ 1 +

1

2

v2

c2
.

The approximation is good as long as v is small compared to c.

Example. Find the Taylor series for
x

2 + x
at a = −1.

Since I’m expanding at a = −1, the answer must come out in terms of powers of x+ 1.
Start with the function you’re trying to expand. To get x + 1’s in the answer, write the given function

in terms of x+ 1:
x

2 + x
=

(x+ 1)− 1

1 + (x+ 1)
.

(Notice that the work has to be legal algebra.)
I’ll break up the fraction and do the pieces separately.

(x + 1)− 1

1 + (x + 1)
=

x+ 1

1 + (x+ 1)
−

1

1 + (x + 1)
.

I want to “match” each piece against the standard series
1

1− u
. Here’s the first piece:

x+ 1

1 + (x+ 1)
= (x+ 1)

1

1− [−(x+ 1)]
.

Expand
1

1− [−(x+ 1)]
by setting u = −(x+ 1) in

1

1− u
:

(x+1)
1

1− [−(x+ 1)]
= (x+1) ·

(

1− (x+ 1) + (x+ 1)2 − (x+ 1)3 + · · ·
)

= (x+1)− (x+1)2+(x+1)3−· · · .

Here’s the second piece:

1

1 + (x+ 1)
=

1

1− [−(x+ 1)]
= 1− (x+ 1) + (x+ 1)2 − (x+ 1)3 + · · · .

Put the two pieces together:

[

(x+ 1)− (x+ 1)2 + (x+ 1)3 − · · ·
]

−
[

1− (x+ 1) + (x + 1)2 − (x+ 1)3 + · · ·
]

=
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(x + 1) − (x+ 1)2 + (x+ 1)3 − · · ·
−1 + (x + 1) − (x+ 1)2 + (x+ 1)3 − · · ·

=

−1 + 2(x+ 1)− 2(x+ 1)2 + 2(x+ 1)3 − · · · .

That is,
x

2 + x
= −1 + 2(x+ 1)− 2(x+ 1)2 + 2(x+ 1)3 − · · · .

Example. What is the Maclaurin series for f(x) = 7x2 − 3x + 13? What is the Taylor series for f(x) =
7x2 − 3x+ 13 at a = −1?

The Maclaurin series for a polynomial is the polynomial: f(x) = 7x2 − 3x+ 13.
To obtain the Taylor expansion at a = −1, write the function in terms of x+ 1:

7x2 − 3x+ 13 = 7(x+ 1)2 − 17x+ 6 = 7(x+ 1)2 − 17(x+ 1) + 23.

Example. Find f (100)(0) for f(x) =
1

3− x
.

The series for
1

3− x
at c = 0 is

1

3− x
=

1

3
·

1

1−
x

3

=
1

3
·

(

1 +
x

3
+

x2

32
+ · · ·+

xn

3n
+ · · ·

)

=

1

3
+

x

32
+

x2

33
+ · · ·+

xn

3n+1
+ · · · .

The 100th degree term is
x100

3101
. On the other hand, Taylor’s formula says that the 100th degree term is

f (100)(0)

100!
x100. Equating the coefficients, I get

1

3101
=

f (100)(0)

100!

f (100)(0) =
100!

3101

While you can often use known series to find Taylor series, it’s sometimes necessary to find a series using
Taylor’s formula. (In fact, that’s where the “known series” come from.)

Example. Find the first four nonzero terms and the general term of the Taylor series for f(x) = ex at a = 0
and at a = 1 by computing the derivatives of f .

f(x) = ex, f ′(x) = ex, and in general f (n)(x) = ex.

For a = 0, f (n)(0) = e0 = 1 for all n. The Taylor series at a = 0 is

f(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·+

1

n!
xn + · · · .
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For a = 1, f (n)(1) = e1 = e for all n. The Taylor series at a = 1 is

f(x) = e+ e(x− 1) +
e

2!
(x− 1)2 +

3

3!
(x− 1)3 + · · ·+

1

n!
(x− 1)n + · · · .

If you truncate the series expanded at c after the nth-degree term, what’s left is the nth-degree Taylor

polynomial pn(x; c). For example, the third degree polynomial of ex at a = 0 is

p3(x; 0) = 1 + x+
1

2!
x2 +

1

3!
x3.

Note that the “n” here refers to the largest power of x, not the number of terms. For example, the

Taylor series for
1

1− x2
at a = 0 is

1

1− x2
= 1 + x2 + x4 + · · ·+ x2n + · · · .

The 2nd degree Taylor polynomial and the 3rd degree Taylor polynomial are equal:

p2(x; 0) = p3(x; 0) = 1 + x2.

Example. Find the 3rd degree Taylor polynomial for f(x) = tanx at x =
π

4
.

f(x) = tanx, f ′(x) = (secx)2, f ′′(x) = 2(secx)2 tanx, f ′′′(x) = 2(secx)4 + 4(secx)2(tanx)2.

Thus,

f
(π

4

)

= 1, f ′

(π

4

)

= 2, f ′′

(π

4

)

= 4, f ′′′

(π

4

)

= 16.

The 3rd degree Taylor polynomial is

p3

(

x;
π

4

)

= 1 + 2
(

x−
π

4

)

+ 2
(

x−
π

4

)2

+
8

3

(

x−
π

4

)3

.

Example. Suppose
f(4) = 7, f ′(4) = −3, f ′′(4) = 4, f ′′′(4) = 12.

Use the 3rd degree Taylor polynomial for f at c = 4 to approximate f(4.2).

I have

p3(x; 4) = 7− 3(x− 4) +
4

2!
(x − 4)2 +

12

3!
(x− 4)3 = 7− 3(x− 4) + 2(x− 4)2 + 2(x− 4)3.

Plug x = 4.2 in:

f(4.2) ≈ 7− 3(4.2− 4) + 2(4.2− 4)2 + 2(4.2− 4)3 = 6.496.
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It’s also possible to construct power series by integrating or differentiating other power series. A power

series may be integrated or differentiated term-by-term in the interior of its interval of convergence. (You
will need to check convergence at the endpoints separately.)

Example. (a) Find the Taylor series at c = 0 for
1

8 + x
.

(b) Find the Taylor series at c = 0 for
1

(8 + x)2
.

(a)
1

8 + x
=

1

8

1

1 +
x

8

=
1

8

1

1−
(

−
x

8

) =

1

8

(

1−
x

8
+

x2

64
−

x3

512
+

x4

4096
− · · ·

)

.

(b) Notice that
d

dx

1

8 + x
= −

1

(8 + x)2
.

Hence,
1

(8 + x)2
= −

d

dx

1

8 + x
= −

d

dx

1

8

(

1−
x

8
+

x2

64
−

x3

512
+

x4

4096
− · · ·

)

=

−
1

8

(

−
1

8
+

x

32
−

3x2

512
+

x3

1024
− · · ·

)

.

Example. (a) Find the Taylor series at c = 0 for
1

1 + x
.

(b) Use the series in (a) to find the series for ln(1 + u) expanded at c = 0.

(a) Put u = −x in the series for
1

1− u
to obtain

1

1 + x
= 1− x+ x2 − x3 + · · · .

It converges for −1 < x < 1.

(b) Integrate the series in (a) from 0 to u:

ln(1 + u) =

∫ u

0

(

1− x+ x2 − x3 + · · ·
)

dx = u−
u2

2
+

u3

3
−

u4

4
+ · · · .

This series will converge for −1 < u < 1. The left side blows up at u = −1. On the other hand, if u = 1,

ln 2 = 1−
1

2
+

1

3
−

1

4
+ · · · .

The right side does converges (by the Alternating Series Test), so the ln(1 + u) series converges for
−1 < u ≤ 1.

Example. Find the Taylor series for ln(5− x) at a = 2.
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First, note that

∫ x

2

1

5− t
dt = [− ln(5 − t)]x2 = − ln(5− x) + ln 3, so ln(5 − x) = ln 3−

∫ x

2

1

5− t
dt.

I integrated from 2 to x because I want the expansion at a = 2.

Now find the series at a = 2 for
1

5− t
:

1

5− t
=

1

3− (t− 2)
=

1

3

1

1−
t− 2

3

=
1

3

∞
∑

n=0

(t− 2)n

3n
.

Plug this series back into the integral and integrate term-by-term:

ln(5 − x) = ln 3−

∫ x

2

1

5− t
dt = ln 3−

1

3

∫ x

2

∞
∑

n=0

(t− 2)n

3n
dt = ln 3−

1

3

∞
∑

n=0

[

(t− 2)n+1

3n(n+ 1)

]x

2

=

ln 3−
1

3

∞
∑

n=0

(x − 2)n+1

3n(n+ 1)
= ln 3−

∞
∑

n=0

(x− 2)n+1

3n+1(n+ 1)
.

Example. (a) Construct the Taylor series at c = 0 for
1

1 + t2
.

(b) Use the series in (a) to construct the Taylor series at c = 0 for tan−1 x.

(c) Use the series in (b) to obtain a series for π.

(a) I need powers of t, so

1

1 + t2
=

1

1− (−t2)
= 1− t2 + t4 − t6 + · · ·+ (−1)nt2n + · · · .

(b) Note that
∫ x

0

1

1 + t2
dt =

[

tan−1 t
]x

0
= tan−1 x.

Therefore,

tan−1 x =

∫ x

0

1

1 + t2
dt =

∫ x

0

(

1− t2 + t4 − t6 + · · ·
)

dt =

[

t−
1

3
t3 +

1

5
t5 −

1

7
t7 + · · ·

]x

0

= x−
1

3
x3 +

1

5
x5 −

1

7
x7 + · · · .

(c) Plug x = 1 into the series in (b), using the fact that tan−1 1 =
π

4
:

tan−1 1 = 1−
1

3
+

1

5
−

1

7
+ · · ·

π

4
= 1−

1

3
+

1

5
−

1

7
+ · · ·

π = 4−
4

3
+

4

5
−

4

7
+ · · ·
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Think of a Taylor series as a “replacement” for its function. For example, you can often use a Taylor
series to compute a limit or an integral by replacing a function with its series.

Example. (a) Find the first 4 nonzero terms of the Taylor series at c = 0 for ln(1 + x3).

(b) Use the series in (a) to guess the value of lim
x→0

ln(1 + x3)

x3
.

(a) Let u = x3 in the series for ln(1 + u):

ln(1 + x3) = x3 −
1

2
x6 +

1

3
x9 +

1

4
x12 − · · · .

(b) Plug the series from (a) into the limit:

lim
x→0

ln(1 + x3)

x3
= lim

x→0

1

x3

(

x3 −
1

2
x6 +

1

3
x9 +

1

4
x12 − · · ·

)

= lim
x→0

(

1−
1

2
x3 +

1

3
x6 +

1

4
x9 − · · ·

)

= 1.

Example. (a) Construct the Taylor series at c = 0 for x2e−x2

. (Write out at least the first 4 nonzero terms.)

(b) Use the first 3 terms of the series in (a) to approximate

∫ 1

0

x2e−x2

dx.

(c) Use the Alternating Series error estimate to estimate the error in (b).

(a) I set u = −x2 in the series for eu:

e−x2

= 1− x2 +
x4

2!
−

x6

3!
+

x8

4!
− · · · .

Multiply by x2:

x2e−x2

= x2 − x4 +
1

2
x6 −

1

6
x8 +

1

24
x10 − · · · .

(b)
∫ 1

0

x2e−x2

dx ≈

∫ 1

0

(

x2 − x4 +
1

2
x6

)

dx =

[

1

3
x3 −

1

5
x5 +

1

14
x7

]1

0

=
43

210
= 0.20476 . . . .

(c) The Alternating Series error estimate says that the error is less than the next term. So I take the next
term in the series in (a) and integrate:

∫ 1

0

1

6
x8 dx =

[

1

54
x9

]1

0

=
1

54
.

The error in the estimate in (b) is no greater than
1

54
= 0.01851 . . ..

[1] TomM. Apostol, Mathematical Analysis. Reading, Massachusetts: Addision-Wesley Publishing Company,
Inc., 1957.
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