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Taylor Series

The Taylor series for f(x) at x = ¢ is
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(By convention, f 0 = ¢ .) When ¢ = 0, the series is called a Maclaurin series.

You can construct the series on the right provided that f is infinitely differentiable on an interval
containing c¢. You already know how to determine the interval of convergence of the series. However, the
fact that the series converges at x does not imply that the series converges to f(z).

As an example, consider the function
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fe) {0 ifz=0"

It is infinitely differentiable everywhere. In particular, all the derivatives of f at 0 vanish, and the

Maclaurin series for f is identically 0.
Hence, the Maclaurin series for f converges for all x, but only converges to f(z) at z = 0.

The following result ([1], page 418) gives a sufficient condition for the Taylor series of a function to
converge to the function:

Theorem. Let f(z) be infinitely differentiable on a < x < b, and let a < ¢ < b. Suppose there is a constant
M such that |f(™(z)| < M for all n > 1, and for all  in N N [a,b], where N is a neighborhood of ¢. Then
for all x € N N|a,b],

% f(n) (e
fo) =S 0 o
n=0

n!
In other words, under reasonable conditions:
1. You can construct a Taylor series by computing the derivatives of f.

2. The series will converge to f on an interval around the expansion point. (You can find the interval
of convergence as usual.)

It’s tedious to have to compute lots of derivatives, and in many cases you can derive a series from
another known series. Here are the series expansions for several important functions:
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Example. Find the Taylor series for at a = 2. What is its interval of convergence?

T+

I want things to come out in powers of x — 2, so I'll write the function in terms of x — 2:

1 1
= Make the x — 2 first
z+3 ct (x—2) (Make the @ rst)
1
oy p—y (I need 5, because 5 3)

T’ll use the series for 1 . To do this, I need 1 — u on the bottom. I make a “1” by factoring 5 out of

the terms on the bottom, then I make a “—” by writing the “+” as “—(—)”:

1 1 1 1 1
—_92) -2 5 —
54+(x—2) 5 142 5 1_(_:10 2)
5 5
r—2 .
Let u = — in the series for . Then
1 1 :1:—2+ r—2\2 r—2 3+
1 _:c—2 5 5
5
Hence,
1L _ 1|, _z=2 (z-2)" (x-2Y°
r+3 5 5 5 5
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The u-series converges for —1 < u < 1, so the z-series converges for —1 < 2 <l,or -3<z<T.
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Example. Find the Taylor series for - at a = —3. What is its interval of convergence?
Since I'm expanding at a = —3, I need powers of z + 3:
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Find the interval of convergence:
-l<u<l1

1
-1< 1—0(:c+3)<1
-10<z+3<10

-B<z<7

Example. Find the Taylor series at ¢ = 1 for €.

I need powers of x — 1.

52 -1 2 53 -1 3
5T _ Ba—1)+5 _ Sa—1) 5 _ 5 <1 +5@—1)+ (w2l ) n (563' ) 4. ) _

To get this, T let u = 5(z — 1) in the series for e*.
For the interval of convergence:
—00 < u < 00

—o0 < bz —1) < o0
—o<zr—1<0o0

—o0o<Tr <0

Example. Find the Taylor series for sinz at ¢ = g

™
I need powers of z — —, so

e =sin|(r = 3) + 3]
sine =sin |(z — = ~
2 2
Next, I'll use the angle addition formula for sine:

sin(a 4+ b) = sinacosb + sinbcosa.

Isetazw—gandbzz. Sincecosg=Oandsing:1,1get

w((o-3)+3] meos(o-3) =15 (e-F) + 5 (e-3) ~g(=-3)
Sl ACY LS el G Y A TR S n\" 773 6l \" T3

O

Example. Find the Taylor series for Inxz at « = 1. What is its interval of convergence?
Use -
In(1+u) = Z(_l)nﬂu I
n=1

I'm expanding at a = 1, so I want the result to come out in powers of x — 1. This is easy — just set
u=z—1:

ln:z::(:z:—l)—%(x—1)2—|—%(x—1)3+-'-+(—1)"+1%(x—1)”+-'~.

The u-series converges for —1 < u < 1, so the z-series converges for -1 <z —-1<l,or0 <z <2. O
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Example. The quantity (1 — —2> occurs in special relativity. (v is the velocity of an object, and ¢ is
c

2\ —1/2
the speed of light.) Approximate <1 — —2) using the first two nonzero terms of the binomial series.
c

-1
(1+U)a=1+au+%u2+---,
1
So fi =—=
o for a 5 1 ,
1 -2 _ 2 Zut— ..,
(14 u) 2u+8u
2
Takeu:—v—2:
c

) 02 71/271+lv2+3v4+ N1+1v2
- 2¢2 8¢t - 2¢2’

The approximation is good as long as v is small compared to ¢. 0O

Example. Find the Taylor series for 5 T ata=-1.
x
Since I'm expanding at ¢ = —1, the answer must come out in terms of powers of = + 1.
Start with the function you’re trying to expand. To get x + 1’s in the answer, write the given function

in terms of x + 1:
x (x+1)-1

242 1+ (x+1)

(Notice that the work has to be legal algebra.)
T’ll break up the fraction and do the pieces separately.

(x4+1)—-1  z+4+1 1

14 (x+1) 14@+1) 1+ (x+1)

. Here’s the first piece:

1
I want to “match” each piece against the standard series 1

z+1
ey Rk way i provay
Expandmby setting u = —(x + 1) inliu
— = = ( (1= (= T 2 _(x S4)=(a —(z 24 (x ...,
(3:+1)1_[_(x+1)]—( +1)-(I-(@+)+@+1)?—(2+1)°+) = (@+1)— (z+ 1)+ (z+1)

Here’s the second piece:

1

1+(@x+1) 1-[—(z+1) =l—(z+D)+@+1)2—(@z+1)°+---.

Put the two pieces together:
[(z+1)—(@+1)°+@+1)° -] - [I-@+D+@+1)°—(z+1)°+--] =
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(x+1) — (x+1)2 + (2+1)® —
-1 + (@z+1) - (z+1)? + (z+1)3 -
—1+2z+1)-2@+1)*+2x+1)>—---.

That is,
x

2+x

=—1+2@z+1)-2@x+1)*+2@x+1)>*----. O

Example. What is the Maclaurin series for f(z) = 72? — 3z + 13?7 What is the Taylor series for f(z) =
72?2 —3x+ 13 at a = —1?

The Maclaurin series for a polynomial is the polynomial: f(x) = 72? — 3x + 13.
To obtain the Taylor expansion at a = —1, write the function in terms of x + 1:

T2 —3r+13=T(x+ 1) - 172 +6=T(x+1)* - 17(x +1) +23. O

1
Example. Find f(199)(0) for f(z) = T
-
The series for at ¢c=01is
-
3—z 3 {_% 3 3 32 3n B
3
1 r 22 z"
g+§+¥+"'+ﬁ+"'-
2100
The 100" degree term is 3101 On the other hand, Taylor’s formula says that the 100" degree term is

f(lOO) (0)
leoo_ Equating the coefficients, I get

1 B f(lOO) (0)

3101 100!

100!
100 _
F1%(0) = 3101

While you can often use known series to find Taylor series, it’s sometimes necessary to find a series using
Taylor’s formula. (In fact, that’s where the “known series” come from.)

Example. Find the first four nonzero terms and the general term of the Taylor series for f(z) = e” at a =0
and at a = 1 by computing the derivatives of f.

f(x)=¢€", f'(z) =¢" and in general f(")(gc) = €%,

For a = 0, f(™(0) = ¢ = 1 for all n. The Taylor series at a = 0 is

1 1 1,
f(x):1+x+5x2+§x3+~-~+mx e
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For a =1, f(™(1) = ¢! = e for all n. The Taylor series at a = 1 is

1
(@—1)"+---. O

f@)=etele—1)+ 517+ o= 1"+t

21

If you truncate the series expanded at ¢ after the n*P-degree term, what’s left is the n*"-degree Taylor
polynomial p,, (z;¢). For example, the third degree polynomial of e* at a = 0 is

1 1
p3(x;0) =142+ 5:102 + ixg.

Note that the “n” here refers to the largest power of x, not the number of terms. For example, the

1
Taylor series for 1.2 at a =01is

1
— =1+t
1— a2

The 2" degree Taylor polynomial and the 34 degree Taylor polynomial are equal:

pa(2;0) = p3(2;0) =1+ 2% O

Example. Find the 3" degree Taylor polynomial for f(z) = tanz at z = g

f(z) =tanz, f'(z) = (secx)?®, f’(z)=2(secx)*tanz, f"(x)=2(secx)* + 4(secz)?(tanz)?.

G =1 ()= r(E)=s (5=

The 3' degree Taylor polynomial is

p3<x;g) :1+2<x—£>+2<z—g>2+§<x—£>3, a

Thus,

Example. Suppose
fa) =17 f4=-3, f'4)=4, f"4) =12
Use the 3" degree Taylor polynomial for f at ¢ = 4 to approximate f(4.2).

I have
4 2, 12 3 2 3
p3($;4):7—3(x—4)+5(x—4) +§(:E—4) =7-3x—-4)+2(x—-4)"+2(x—-4).
Plug x = 4.2 in:

FA2)~ T —3(42—4) +2(42—4)> +2(4.2 — 4)> = 6.496. O




It’s also possible to construct power series by integrating or differentiating other power series. A power
series may be integrated or differentiated term-by-term in the interior of its interval of convergence. (You
will need to check convergence at the endpoints separately.)

1
Example. (a) Find the Taylor series at ¢ = 0 for 3 .

+x
1
(b) Find the Taylor series at ¢ = 0 for Bror
(a)
A S T R
S+z 8 f‘_sl_(_f)_
+ 8 8
1 1 z n x? a3 n zt 0
8 8 64 512 4096 '
(b) Notice that
4 1 1
de8+x  (8+2)2°
Hence,
1 d 1 d1 x 2 a3 x?
- = = (14 = ) =
8+x)2  duz8+a  dr8 8 64 512 ' 4096

1 1 n T 3z + x3 0
8 8 32 512 1024 '

Example. (a) Find the Taylor series at ¢ = 0 for

14z
(b) Use the series in (a) to find the series for In(1 + u) expanded at ¢ = 0.

to obtain

1
(a) Put w = —z in the series for .

1
—=l-a+a? 24
1+z

It converges for —1 <x < 1. 0O
(b) Integrate the series in (a) from 0 to w:
2 3 4

ln(1—|—u):/ (1-z+a® -2+ da::u—%—k%—uz—l—-'-.
0

This series will converge for —1 < u < 1. The left side blows up at « = —1. On the other hand, if u = 1,

1 1 1
M2=1-=d4=—=cf
" 531"

The right side does converges (by the Alternating Series Test), so the In(1 + u) series converges for
—1l<u<l. O

Example. Find the Taylor series for In(5 — x) at a = 2.

7



First, note that

|
/ —dt [~In(5—t)]; = —In(5 — ) + In3, S0 In(5 — z) :ln3—/ ﬁdt'
y b—
I integrated from 2 to x because I want the expansion at a = 2.
Now find the series at a = 2 for L
I 1 11 1 (t-2)n
5—t_3—@—2)_31_f—2_32; 3n
3
Plug this series back into the integral and integrate term-by-term:
1 (t —2)nt17”
In(5—-2)=1In3 - —dt*13— dt—l3—— —| =
(6-2)=Mn / / SE:{Wm+l)2
n=0
1 (z —2)nt! (z —2)nt!
In3 — - —— =In3 -
. 32;3Wn+1 E:3n+1n+1

Example. (a) Construct the Taylor series at ¢ = 0 for Te

(b) Use the series in (a) to construct the Taylor series at ¢ = 0 for tan™! x.
(c) Use the series in (b) to obtain a series for .

(a) I need powers of ¢, so

1 1
= =12+t =t (1) 4
12 1-(—5) + oA DT+

(b) Note that
¢ 1 -1 .7 -1
/0 m dt = [tan t}O = tan x.

Therefore,
xT 1 xT
tan 'z = dt = Lttt =54 ..) dt =
an” " x /0 o /0 ( + +0)

1 1 1 ‘ 1 1 1
PO Bt By GRS . Bt ey T HU
{ 3 +5 - + }0 T 333 +533 7:1: +

¢) Plug « = 1 into the series in (b), using the fact that tan=!1 = T
(c) Plug g 1

1 1 1
hl
l=1—=4-—=
37577
- 1 1 1
14+ Z_Z 00
1 3757 7"
4 4 4
:4—— —_ — —
T 375 7




Think of a Taylor series as a “replacement” for its function. For example, you can often use a Taylor
series to compute a limit or an integral by replacing a function with its series.

Example. (a) Find the first 4 nonzero terms of the Taylor series at ¢ = 0 for In(1 + z3).

In(1 3
(b) Use the series in (a) to guess the value of lin%) n(;gaz)
T—r X
(a) Let u = 2® in the series for In(1 + u):
1 1 1
(1l 4+ 23) = 28 — 246 L 2,0 212 g
n(l+z2°) == 2:1:+33:+43:

(b) Plug the series from (a) into the limit:

In(1 3 1 1 1 1 1 1 1
hmmzlim— 2 — e ¥ ) =lim (1 -2+ 22+ 22— ) =1 O
z—0 2 3 4

Example. (a) Construct the Taylor series at ¢ = 0 for a2e (Write out at least the first 4 nonzero terms.)

1
(b) Use the first 3 terms of the series in (a) to approximate / 22e™" da.
0

(c) Use the Alternating Series error estimate to estimate the error in (b).

(a) I set u = —2? in the series for e
4 6 8
—2® _q_2, T
e T TRRAT
Multiply by z2:
2 —z? 2 a1 6 1 8 1 10
xr“e x x +2:1c 6:10 +24x

(b)

1 1 1
9 g2 2 4 1 6 1 3 1 5 1 7 43
T dfﬂ ~ l + —x d:l = |- — — + —a = — = 020476 .... 0O

(c) The Alternating Series error estimate says that the error is less than the next term. So I take the next

term in the series in (a) and integrate:
1 1
1 4 { 1 9} 1
—x%dr = |—2°| = —.
/0 6 54 |, b4

1
The error in the estimate in (b) is no greater than i 0.01851.... O

[1] Tom M. Apostol, Mathematical Analysis. Reading, Massachusetts: Addision-Wesley Publishing Company,
Inc., 1957.

@2019 by Bruce Ikenaga 9



