Volumes by Cross Sections

Suppose a solid extends from $x=a$ to $x=b$. Suppose that when it is cut by planes perpendicular to the x-axis, the cross-section of the solid cut by such a plane has area $A(x)$. As usual, I divide the interval from a to b into subintervals of width $\Delta x\left(\right.$ say $\Delta x=\frac{b-a}{n}$ for some $\left.n\right)$.

On a typical subinterval, I have cross-sections of areas $A(x)$ and $A(x+\Delta x)$. It's reasonable to suppose that if the function $A(x)$ is "nice enough", there should be a number \bar{x} between x and $x+\Delta x$ such that the volume of the small cross-section (or "slice") of thickness Δx from x to $x+\Delta x$ is exactly

$$
A(\bar{x}) \cdot \Delta x .
$$

Adding up the volumes of such cross-sections gives the volume of the solid:

$$
V=\sum A(\bar{x}) \cdot \Delta x
$$

Replacing $A(\bar{x})$ with $A(x)$ only gives an approximation:

$$
V \approx \sum A(x) \cdot \Delta x
$$

But if I take the limit as $\Delta x \rightarrow 0$, then if $A(x)$ is "nice enough" (for example, continuous as a function of x), then in the limit I will get the exact volume. It will be given by

$$
V=\lim _{\Delta x \rightarrow 0} \sum A(x) \cdot \Delta x=\int_{a}^{b} A(x) d x
$$

Example. The cross-sections of a solid in planes perpendicular to the x-axis have area

$$
A(x)=6 x^{2}+5
$$

Find the volume of the solid from $x=0$ to $x=1$.
Since the cross-sectional area function is given, I just integrate from 0 to 1 :

$$
V=\int_{0}^{1}\left(6 x^{2}+5\right) d x=\left[2 x^{3}+5 x\right]_{0}^{1}=7
$$

In the problems that follow, you need to determine the cross-sectional area function. In many cases, it comes from an area formula from geometry. Here are some common ones.

Example. The base of a solid is the region in the $x-y$ plane bounded above by $y=x^{2}$ and below by the x-axis, from $x=0$ to $x=1$. The cross-sections in planes perpendicular to the x-axis are squares with one side lying in the $x-y$ plane. Find the volume of the solid.

The first picture shows some of the square cross-sections. The second picture shows the base of the solid, with the edge of one of the square cross-sections drawn. The edge of the square is x^{2}, so the area of the cross-section is $\left(x^{2}\right)^{2}$. The volume is

$$
V=\int_{0}^{1}\left(x^{2}\right)^{2} d x=\int_{0}^{1} x^{4} d x=\left[\frac{1}{5} x^{5}\right]_{0}^{1}=\frac{1}{5}
$$

Example. The base of a solid is the region in the $x-y$ plane bounded above by $y=9-x^{2}$ and below by the x-axis. The cross-sections in planes perpendicular to the x-axis are equilateral triangles with one side lying in the $x-y$ plane. Find the volume of the solid.

The base is bounded by $y=9-x^{2}$ and the x-axis. The parabola intersects the x-axis at $x=-3$ and $x=3$.

The picture shows a typical cross-section. It's an equilateral triangle, and its side has length $9-x^{2}$. Hence, the area of the cross-section is $\frac{\sqrt{3}}{4}\left(9-x^{2}\right)^{2}$.

The volume is

$$
\begin{gathered}
V=\int_{-3}^{3} \frac{\sqrt{3}}{4}\left(9-x^{2}\right)^{2} d x=\frac{\sqrt{3}}{4} \int_{-3}^{3}\left(81-18 x^{2}+x^{4}\right) d x=\frac{\sqrt{3}}{4}\left[81 x-6 x^{3}+\frac{1}{5} x^{5}\right]_{-3}^{3}= \\
\frac{324 \sqrt{3}}{5}=112.23689 \ldots
\end{gathered}
$$

Example. The base of a solid is the region in the first quadrant cut off by the line $x+y=8$. The crosssections in planes perpendicular to the x-axis are semicircles with their diameters lying in the x - y plane. Find the volume of the solid.

The diameter of a typical cross-section is $y=8-x$, so the radius is $\frac{8-x}{2}$. The volume is

$$
V=\int_{0}^{8} \frac{\pi}{2}\left(\frac{8-x}{2}\right)^{2} d x=\frac{\pi}{8} \int_{0}^{8}(8-x)^{2} d x=\frac{\pi}{8}\left[-\frac{1}{3}(8-x)^{3}\right]_{0}^{8}=\frac{64 \pi}{3}=67.02064 \ldots
$$

Example. The base of a solid is the region in the first quadrant cut off by the line $x+y=1$. The crosssections in planes perpendicular to the x-axis are isosceles right triangles with the hypotenuses lying in the $x-y$ plane. Find the volume of the solid.

Since the hypotenuse of a typical triangle is $1-x$, the side of such a triangle is $\frac{1-x}{\sqrt{2}}$. The area of a triangular slice is one-half the base times the height, which is

$$
\frac{1}{2}\left(\frac{1-x}{\sqrt{2}}\right)\left(\frac{1-x}{\sqrt{2}}\right)=\frac{1}{4}(1-x)^{2} .
$$

The volume is

$$
V=\frac{1}{4} \int_{0}^{1}(1-x)^{2} d x=\frac{1}{4}\left[-\frac{1}{3}(1-x)^{3}\right]_{0}^{1}=\frac{1}{12} .
$$

Example. A solid hemisphere of radius 4 has its base in the x - y-plane. It is cut by a plane parallel to the x - y-plane and 1 unit above it. Find the volume of the part of the hemisphere which lies between the cutting plane and the x - y-plane.

In this problem, you have to decide how to slice the solid in order to give cross-sections whose areas you can compute. Slicing the solid by planes parallel to the $x-y$ plane produces circular disks.

The next picture shows the solid in cross-section, with a typical slice drawn.

By Pythagoras' theorem, the radius of a disk lying z units above the $x-y$-plane is $\sqrt{16-z^{2}}$, so its cross-sectional area is $\pi\left(16-z^{2}\right)$.

The volume is

$$
\int_{0}^{1} \pi\left(16-z^{2}\right) d z=\pi\left[16 z-\frac{1}{3} z^{3}\right]_{0}^{1}=\frac{47 \pi}{3}=49.21828 \ldots
$$

