Arc Length in R^{n}

Let $f:[a, b] \rightarrow \mathbb{R}^{n}$ be a curve in \mathbb{R}^{n}. How would you find the length of the curve? One approach is to start by approximating the curve with segments.

Divide the base interval $[a, b]$ up into subintervals:

$$
a_{0}=a, a_{1}, a_{2}, \ldots a_{n-1}, a_{n}=b
$$

This is called a partition of the subinterval. You may recall doing this to set up Riemann sums.
If you plug the a 's into f, you get points on the curve which you can connect with segments. Here's a pictures with 4 points and 3 segments:

The sum of the segments lengths approximates the length of the curve.
Definition. A curve $f:[a, b] \rightarrow \mathbb{R}^{n}$ is rectifiable if the sums of the segment lengths have an upper bound: that is, there is a number M such that for every partitition of $[a, b]$, the sum of the segment lengths is less than M.

If a curve is rectifiable, the length of the curve is least upper bound of the numbers M which bound the sums of segment lengths for all partititions.

If a curve has reasonable properties, we can compute the length using an integral.
Theorem. Suppose $f:[a, b] \rightarrow \mathbb{R}^{n}$ is a curve where f is differentiable and $f^{\prime}(t)$ is continuous. Then f is rectifiable, and the length of f is

$$
\int_{a}^{b}\left\|f^{\prime}(t)\right\| d t
$$

While the proof is a little technical, we can see why this makes sense. $\left\|f^{\prime}(t)\right\|$ is the speed of an object moving along the curve. In a small increment Δt of time, the object moves a distance $\left\|f^{\prime}(t)\right\| \Delta t$. If we let the time increments go to 0 and add up the distances by integrating, we get the distance travelled by the object, which is the length of the curve.

Example. Find the length of the curve

$$
\begin{gathered}
x=t^{2}-t, \quad y=\sqrt{3} t^{2}, \quad z=\frac{2 \sqrt{12}}{3} t^{3 / 2}+1, \quad \text { for } \quad 0 \leq t \leq 1 \\
\frac{d x}{d t}=2 t-1, \quad \frac{d y}{d t}=2 \sqrt{3} t, \quad \frac{d z}{d t}=\sqrt{12} t^{1 / 2} \\
\left(\frac{d x}{d t}\right)^{2}=4 t^{2}-4 t+1, \quad\left(\frac{d y}{d t}\right)^{2}=12 t^{2}, \quad\left(\frac{d z}{d t}\right)^{2}=12 t \\
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}=16 t^{2}+8 t+1=(4 t+1)^{2}
\end{gathered}
$$

$$
\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}=4 t+1
$$

The length is

$$
\int_{0}^{1}(4 t+1) d t=\left[2 t^{2}+t\right]_{0}^{1}=3
$$

Example. Find the length of the curve

$$
\begin{gathered}
x=e^{2 t}, \quad y=e^{-2 t}, \quad z=\sqrt{8} t, \quad \text { for } \quad 0 \leq t \leq 1 \\
\frac{d x}{d t}=2 e^{2 t}, \quad \frac{d y}{d t}=-2 e^{-2 t}, \quad \text { derzt }=\sqrt{8} \\
\left(\frac{d x}{d t}\right)^{2}=4 e^{4 t}, \quad\left(\frac{d y}{d t}\right)^{2}=4 e^{-4 t}, \quad\left(\frac{d z}{d t}\right)^{2}=8 \\
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}=4 e^{4 t}+8+4 e^{-4 t}=4\left(e^{4 t}+2+e^{-4 t}\right)=4\left(e^{2 t}+e^{-2 t}\right)^{2} \\
\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}=2\left(e^{2 t}+e^{-2 t}\right)
\end{gathered}
$$

The length is

$$
\int_{0}^{1} 2\left(e^{2 t}+e^{-2 t}\right) d t=\left[e^{2 t}-e^{-2 t}\right]_{0}^{1}=e^{2}-e^{-2}=7.25372 \ldots
$$

