Center of Mass

Imagine two weights on opposite sides of a balance board. One weight is 5 kilograms and is 4 meters from the center. The other weight is 10 kilograms and is 2 meters from the center.

The weights balance. What is relevant is the products of the mass and the distance of the mass from the center.

Consider region R in the plane. Imagine that it is made out of a thin material with varying density $\delta(x, y)$. Consider a small rectangular piece with dimensions $d x$ by $d y$ located at the point (x, y). Its mass is $\delta(x, y) d x d y$.

The total mass is

$$
M=\iint_{R} \delta(x, y) d x d y
$$

By analogy with the balance board example, I measure the "twisting" about the y-axis produced by the small rectangular piece. It is the product of the mass $\delta(x, y) d x d y$ and the distance to the y-axis, which is x :

$$
x \cdot d(x, y) d x d y
$$

The total amount of"twisting" about the y-axis is the x-moment, and is obtained by integrating ("adding up") the "twisting" produced by each of the small pieces that make up the region:

$$
m_{x}=\iint_{R} x \delta(x, y) d x d y
$$

I can define the y-moment in the same way:

$$
m_{y}=\iint_{R} y \delta(x, y) d x d y
$$

Now imagine the region compressed to small ball which has the same total mass M as the original region. Where should the small ball be located so that it produces the same x and y-moments? The location is called the center of mass of the original region; if its coordinates are (\bar{x}, \bar{y}), I want

$$
\bar{x} \cdot M=m_{x} \quad \text { and } \quad \bar{y} \cdot M=m_{y} .
$$

Solving for \bar{x} and \bar{y}, I get

$$
\begin{aligned}
& \bar{x}=\frac{m_{x}}{M}=\frac{\iint_{R} x \delta(x, y) d x d y}{\iint_{R} \delta(x, y) d x d y}, \\
& \bar{y}=\frac{m_{y}}{M}=\frac{\iint_{R} y \delta(x, y) d x d y}{\iint_{R} \delta(x, y) d x d y} .
\end{aligned}
$$

We can do the same thing in 3 dimensions. Suppose a solid object occupies a region R in space, and that the density of the solid at the point (x, y, z) is $\delta(x, y, z)$. The total mass of the object is given by

$$
M=\iiint_{R} \delta(x, y, z) d x d y d z
$$

The moments in the x, y, and z directions are given by

$$
\begin{aligned}
m_{x} & =\iiint_{R} x \delta(x, y, z) d x d y d z, \\
m_{y} & =\iiint_{R} y \delta(x, y, z) d x d y d z, \\
m_{z} & =\iiint_{R} z \delta(x, y, z) d x d y d z .
\end{aligned}
$$

You can think of them in a rough way as representing the "twisting" about the axis in question produced by a small bit of mass $\delta(x, y, z) d x d y d z$ at the point (x, y, z).

The center of mass is the point $(\bar{x}, \bar{y}, \bar{z})$ given by

$$
\begin{aligned}
& \bar{x}=\frac{m_{x}}{M}=\frac{\iiint_{R} x \delta(x, y, z) d x d y d z}{\iiint_{R} \delta(x, y, z) d x d y d z}, \\
& \bar{y}=\frac{m_{y}}{M}=\frac{\iiint_{R} y \delta(x, y, z) d x d y d z}{\iiint_{R} \delta(x, y, z) d x d y d z}, \\
& \bar{z}=\frac{m_{z}}{M}=\frac{\iiint_{R} z \delta(x, y, z) d x d y d z}{\iiint_{R} \delta(x, y, z) d x d y d z} .
\end{aligned}
$$

If a region in the plane or a solid in space has constant density $\delta(x, y, z)=k$, then the center of mass is called the centroid. In this case, the density drops out of the formulas for \bar{x}, \bar{y}, and \bar{z}. For example,

$$
\bar{x}=\frac{\iiint_{R} x \delta(x, y, z) d x d y d z}{\iiint_{R} \delta(x, y, z) d x d y d z}=\frac{\iiint_{R} x \cdot k d x d y d z}{\iiint_{R} k d x d y d z}=\frac{\iiint_{R} x d x d y d z}{\iiint_{R} d x d y d z} .
$$

(Of course, you can usually use a double integral to compute the volume of a solid.)

The centroid of the region is $(\bar{x}, \bar{y}, \bar{z})$, where

$$
\bar{x}=\frac{\iiint_{R} x d x d y d z}{\iiint_{R} d x d y d z}, \quad \bar{y}=\frac{\iiint_{R} y d x d y d z}{\iiint_{R} d x d y d z}, \quad \bar{z}=\frac{\iiint_{R} z d x d y d z}{\iiint_{R} d x d y d z} .
$$

Recall that if R is a region in space, the volume of R is

$$
V=\iiint_{R} d x d y d z
$$

Thus, the denominators of the fractions above are all equal to volume of R.
The corresponding formulas for the centroid of a region in the plane are:

$$
\bar{x}=\frac{\iint_{R} x d x d y}{\iint_{R} d x d y}, \quad \bar{y}=\frac{\iint_{R} y d x d y}{\iint_{R} d x d y}
$$

Notice that the integral $\iint_{R} d x d y$ is just the area of R.

Example. Find the centroid of the region in the first quadrant bounded above by $y=x^{2}$, from $x=0$ to $x=1$.

Since the question is asking for the centroid, the density is assumed to be constant.
The region is

$$
\left\{\begin{array}{c}
0 \leq x \leq 1 \\
0 \leq y \leq x^{2}
\end{array}\right\}
$$

First, the area is

$$
\int_{0}^{1} x^{2} d x=\left[\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{1}{3}
$$

Note that I didn't need a double integral to find the area.
The x-moment is

$$
\int_{0}^{1} \int_{0}^{x^{2}} x d x d x=\int_{0}^{1} x[y]_{0}^{x^{2}} d x=\int_{0}^{1} x^{3} d x=\left[\frac{1}{4} x^{4}\right]_{0}^{1}=\frac{1}{4}
$$

The y-moment is

$$
\int_{0}^{1} \int_{0}^{x^{2}} y d x d x=\int_{0}^{1}\left[\frac{1}{2} y^{2}\right]_{0}^{x^{2}} d x=\frac{1}{2} \int_{0}^{1} x^{4} d x=\left[\frac{1}{10} x^{5}\right]_{0}^{1}=\frac{1}{10}
$$

Therefore,

$$
\begin{gathered}
\bar{x}=\frac{\frac{1}{4}}{\frac{1}{3}}=\frac{3}{4} . \\
\bar{y}=\frac{\frac{1}{10}}{\frac{1}{3}}=\frac{3}{10} .
\end{gathered}
$$

The centroid is $\left(\frac{3}{4}, \frac{3}{10}\right)$.

You can often use symmetry to find the coordinates of the center of mass, or to determine a relationship among the coordinates - for example, in some cases smmetry implies that some of the coordinates will be equal.

Example. Find the centroid of the region R bounded above by the plane $z=4$ and below by the paraboloid $z=x^{2}+y^{2}$.

By symmetry, $\bar{x}=\bar{y}=0$, so I only need to find \bar{z}. I'll use cylindrical coordinates.
$z=4$ and $z=x^{2}+y^{2}$ intersect in $x^{2}+y^{2}=4$, so the projection of R into the x - y-plane is the interior of the circle of radius 2 centered at the region.

Note that $z=x^{2}+y^{2}=r^{2}$ in cylindrical.
The region is

$$
\left\{\begin{array}{c}
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq 2 \\
r^{2} \leq z \leq 4
\end{array}\right\}
$$

The volume is

$$
\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) \cdot r d r d \theta=2 \pi \int_{0}^{2}\left(4 r-r^{3}\right) d r=2 \pi\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{0}^{2}=8 \pi
$$

The z-moment is

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{2}}^{4} z \cdot r d z d r d \theta=2 \pi \int_{0}^{2} r\left[\frac{1}{2} z^{2}\right]_{r^{2}}^{4} d r=2 \pi \int_{0}^{2} r\left(8-\frac{1}{2} r^{4}\right) d r= \\
2 \pi \int_{0}^{2}\left(8 r-\frac{1}{2} r^{5}\right) d r=2 \pi\left[4 r^{2}-\frac{1}{12} r^{6}\right]_{0}^{2}=\frac{64 \pi}{3}
\end{gathered}
$$

Hence,

$$
\bar{z}=\frac{\frac{64 \pi}{3}}{8 \pi}=\frac{8}{3} .
$$

The centroid is $\left(0,0, \frac{8}{3}\right)$.

Example. Let R be the region in the first quadrant cut off by the line $x+y=1$. Suppose the region is made of a material with density $\delta(x, y)=6 x+6 y$. Find the coordinates of the center of mass.

The region and the density are symmetric in x and y, so $\bar{x}=\bar{y}$. I only need to find one of the coordinates. The region is

$$
\left\{\begin{array}{c}
0 \leq x \leq 1 \\
0 \leq y \leq 1-x
\end{array}\right\}
$$

The mass is

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1-x}(6 x+6 y) d y d x=\int_{0}^{1}\left[6 x y+3 y^{2}\right]_{0}^{1-x} d x=\int_{0}^{1}\left(6 x(1-x)+3(1-x)^{2}\right) d x= \\
\int_{0}^{1}\left(6 x-6 x^{2}+3(1-x)^{2}\right) d x=\left[3 x^{2}-2 x^{3}-(1-x)^{3}\right]_{0}^{1}=2
\end{gathered}
$$

The x-moment is

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1-x} x(6 x+6 y) d y d x=\int_{0}^{1} \int_{0}^{1-x}\left(6 x^{2}+6 x y\right) d y d x=\int_{0}^{1}\left[6 x^{2} y+3 x y^{2}\right]_{0}^{1-x} d x= \\
\int_{0}^{1}\left(6 x^{2}(1-x)+3 x(x-1)^{2}\right) d x=\int_{0}^{1}\left(3 x-3 x^{3}\right) d x= \\
{\left[\frac{3}{2} x^{2}-\frac{3}{4} x^{4}\right]_{0}^{1}=\frac{3}{4}}
\end{gathered}
$$

Hence,

$$
\bar{x}=\frac{\frac{3}{4}}{2}=\frac{3}{8} .
$$

The center of mass is $\left(\frac{3}{8}, \frac{3}{8}\right)$. \square

Example. Let R be the solid bounded below by $z=\sqrt{x^{2}+y^{2}}$ and above by $z=\sqrt{4-x^{2}-y^{2}}$, and assume that the density is $\delta(x, y, z)=z$. Find the coordinates of the center of mass.

I'll convert to spherical coordinates. $z=\sqrt{x^{2}+y^{2}}$ is a cone whose sides make an angle o $\frac{\pi}{4}$ with the positive z-axis. $z=\sqrt{4-x^{2}-y^{2}}$ is the top hemisphere of a sphere of radius 2 centered at the origin.

The region is

$$
\left\{\begin{array}{c}
0 \leq \theta \leq 2 \pi \\
0 \leq \rho \leq 2 \\
0 \leq \phi \leq \frac{\pi}{4}
\end{array}\right\}
$$

Note that the density is

$$
\delta=z=\rho \cos \phi
$$

Hence, the mass is

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{\pi / 4} \rho \cos \phi \cdot \rho^{2} \sin \phi d \phi d \rho d \theta=2 \pi \int_{0}^{2} \rho^{3}\left[\frac{1}{2}(\sin \phi)^{2}\right]_{0}^{\pi / 4} d \rho= \\
\pi \int_{0}^{2} \rho^{3} d \rho=\pi\left[\frac{1}{4} \rho^{4}\right]_{0}^{2}=2 \pi
\end{gathered}
$$

(I did the ϕ integral using the substitution $u=\sin \phi$.)
Since the region and the density are both symmetric about the z-axis, $\bar{x}=\bar{y}=0$. Therefore, I only need to find \bar{z}.

Since $\delta=z=\rho \cos \phi$, the z-moment is

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{\pi / 4} \rho \cos \phi \cdot \rho \cos \phi \cdot \rho^{2} \sin \phi d \phi d \rho d \theta=2 \pi \int_{0}^{2} \int_{0}^{\pi / 4} \rho^{4}(\cos \phi)^{2} \sin \phi d \phi d \rho= \\
2 \pi \int_{0}^{2} \rho^{4}\left[-\frac{1}{3}(\cos \phi)^{3}\right]_{0}^{\pi / 4} d \rho=\frac{2 \pi}{3}\left(1-\frac{1}{2 \sqrt{2}}\right) \int_{0}^{2} \rho^{4} d \rho= \\
\frac{2 \pi}{3}\left(1-\frac{1}{2 \sqrt{2}}\right)\left[\frac{1}{5} \rho^{5}\right]_{0}^{2}=\frac{64 \pi}{15}\left(1-\frac{1}{2 \sqrt{2}}\right)
\end{gathered}
$$

(I did the ϕ integral using the substitution $u=\cos \phi$.)
Hence,

$$
\bar{z}=\frac{\frac{64 \pi}{15}\left(1-\frac{1}{2 \sqrt{2}}\right)}{2 \pi}=\frac{32}{15}\left(1-\frac{1}{2 \sqrt{2}}\right) .
$$

The center of mass is $\left(0,0, \frac{32}{15}\left(1-\frac{1}{2 \sqrt{2}}\right)\right)$.

