The Chain Rule

Suppose $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are functions of several variables, where the number of outputs of f equals the number of inputs of g. You can "chain" f and g together to make the composite function $g \circ f$:

$$
\mathbb{R}^{p} \quad \stackrel{f}{\rightarrow} \quad \mathbb{R}^{n} \xrightarrow{g} \quad \mathbb{R}^{m}
$$

That is, $(g \circ f)(x)=g(f(x))$.
The derivative of $g \circ f$ is given by the Chain Rule. It is exactly what you'd expect, based on your experience with functions of one variable.

Theorem. Suppose $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is differentiable at c, and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $f(c)$. Then $g \circ f$ is differentiable at c, and

$$
D(g \circ f)(c)=D g[f(c)] \circ D f(c)
$$

In fact, $D g$ can be represented by an $m \times n$ matrix, while $D f$ can be represented by an $n \times p$ matrix. The product on the right is the product of two matrices; it makes sense, because the n columns of $D g$ are compatible with the n rows of $D f$.

Example. Suppose

$$
(x, y, z)=f(s, t)=\left(s^{2}-t^{2}, s^{2}+t^{2}, s t\right), \quad(u, v)=g(x, y, z)=(2 x y-3 y z, x z)
$$

(a) Use the Chain Rule to compute $D(g \cdot f)(s, t)$.
(b) Find $\frac{\partial u}{\partial s}$ and $\frac{\partial v}{\partial s}$.
(a) Here is a picture which shows the dependencies of the variables:

For example, changing s causes x, y, and z to change, which in turn causes u and v to change. First, compute $D f$ and $D g$:

$$
D f=\left[\begin{array}{cc}
2 s & -2 t \\
2 s & 2 t \\
t & s
\end{array}\right], \quad D g=\left[\begin{array}{ccc}
2 y & 2 x-3 z & -3 y \\
z & 0 & x
\end{array}\right]
$$

Next, multiply to obtain $D(g \circ f)(s, t)$, being careful to put $D g$ on the left:
$D(g \circ f)(s, t)=\left[\begin{array}{ccc}2 y & 2 x-3 z & -3 y \\ z & 0 & x\end{array}\right]\left[\begin{array}{cc}2 s & -2 t \\ 2 s & 2 t \\ t & s\end{array}\right]=\left[\begin{array}{cc}4 y s+4 x s-6 z s-3 y t & -4 y t+4 x t-6 z t-3 y s \\ 2 s z+x t & -2 z t+x s\end{array}\right]$.

If you wish, you can substitute

$$
x=s^{2}-t^{2}, \quad y=s^{2}+t^{2}, \quad z=s t
$$

This gives

$$
D(g \circ f)(s, t)=\left[\begin{array}{cc}
8 s^{3}-9 s^{2} t+3 t^{3} & -3 s^{3}+9 s t^{2}-8 t^{3} \\
3 s^{2} t+t^{3} & s^{3}+3 s t^{2}
\end{array}\right]
$$

Note: This kind of substitution becomes messy when the functions are at all complicated, so I'll often leave the derivative as a product of matrices with "different variables",
(b) Here is how to interpret the matrix for $D(g \circ f)(s, t)$. The composite function is $(u, v)=(g \cdot f)(s, t)$. Therefore,

$$
D(g \circ f)(s, t)=\left[\begin{array}{ll}
\frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\
\frac{\partial v}{\partial s} & \frac{\partial v}{\partial t}
\end{array}\right]
$$

So, for example,

$$
\frac{\partial v}{\partial s}=3 s^{2} t+t^{3}
$$

I'll check this directly.

$$
v=x z=\left(s^{2}+t^{2}\right)(s t)=s^{3} t+s t^{3}, \quad \text { so } \quad \frac{\partial v}{\partial s}=3 s^{2} t+t^{3} .
$$

Alternatively, if all you need is one of the partials (say $\frac{\partial u}{\partial s}$), you can use the variable dependency picture to get the formula. Consider all paths in the picture from u to s. Label each path with the corresponding partial derivative. For example, the path from u to y is labelled with $u_{y}=\frac{\partial u}{\partial y}$.

Now to get $\frac{\partial u}{\partial s}$, multiply along each path and add the results:

$$
\frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s}=(2 y)(2 s)+(2 x-3 z)(2 s)+(-3 y)(t)
$$

Example. Suppose that $(x, y)=f(s, t),(u, v)=g(x, y), f(0,1)=(2,-2)$, and

$$
\begin{array}{cc}
D f(0,1)=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right], & D f(2,-2)=\left[\begin{array}{cc}
3 & -3 \\
2 & 0
\end{array}\right] \\
D g(0,1)=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], & D g(2,-2)=\left[\begin{array}{cc}
1 & 1 \\
5 & -1
\end{array}\right]
\end{array}
$$

Find $D(g \circ f)(0,1)$ and $\left.\frac{\partial v}{\partial s}\right|_{(0,1)}$.
First,
$D(g \circ f)(0,1)=D g(f(0,1)) \circ D f(0,1)=D g(2,-2) \circ D f(0,1)=\left[\begin{array}{cc}1 & 1 \\ 5 & -1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ 5 & -7\end{array}\right]$.
Now

$$
D(g \circ f)(s, t)=\left[\begin{array}{ll}
\frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\
\frac{\partial v}{\partial s} & \frac{\partial v}{\partial t}
\end{array}\right]
$$

It follows that $\left.\frac{\partial v}{\partial s}\right|_{(0,1)}=5$.

Example. Suppose

$$
\begin{gathered}
w=5 x^{2} y-y^{2} z+\ln z . \\
x=\cos 6 t, \quad y=\frac{2}{t}+3, \quad z=e^{t^{2}} .
\end{gathered}
$$

Find $\frac{d w}{d t}$.

$\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=(10 x y)(-6 \sin 6 t)+\left(5 x^{2}-2 y z\right)\left(-\frac{2}{t^{2}}\right)+\left(-y^{2}+\frac{1}{z}\right)\left(2 t e^{t^{2}}\right)$.
Note: I'm leaving the answer in terms of x, y, z, and t. If you really needed everything in terms of t, you could substitute using the x, y, and z-equations.

Example. Suppose $(u, v)=f(x, y, z)$ and $(x, y, z)=g(s, t)$ are defined by

$$
u=x^{2}+y^{2}+z^{2}, \quad v=5 x y z
$$

$$
x=\cos s \cos t, \quad y=\cos s \sin t, \quad z=\sin s
$$

Find $\frac{\partial u}{\partial s}$ and $\frac{\partial v}{\partial t}$.

$$
\begin{gathered}
\frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s}=(2 x)(-\sin s \cos t)+(2 y)(-\sin s \sin t)+(2 z)(\cos s) . \\
\frac{\partial v}{\partial t}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial v}{\partial z} \frac{\partial z}{\partial t}=(5 y z)(-\cos s \sin t)+(5 x z)(\cos s \cos t)+(5 x y)(0) .
\end{gathered}
$$

Note: I'm leaving the answer in terms of x, y, z, s, and t. If you really needed everything in terms of s and t, you could substitute using the x, y, and z-equations.

