Determinants

The determinant of an square matrix is a number which is computed from the entries of the matrix. If A is a square matrix, the determinant of A is denoted by $\operatorname{det} A$ or $|A|$.

For 2×2 matrices, the formula is

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Think of the following picture:

Example. Compute the determinant of $\left[\begin{array}{cc}3 & -2 \\ 5 & 4\end{array}\right]$.

$$
\left|\begin{array}{cc}
3 & -2 \\
5 & 4
\end{array}\right|=(3)(4)-(5)(-2)=12-(-10)=22
$$

For matrices which are 3×3 or larger, you can compute the determinant using a recursive algorithm called expansion by cofactors.

Example. Compute the determinant of

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \\
4 & 5 & 2 \\
1 & 0 & 7
\end{array}\right] .
$$

First, pick any row or column. It's usually good to pick a row or column with lots of zeros. I'll use column 2.

Go down column 2 one element at a time. For each element:

1. Cross out the row and column containing the element to leave a 2×2 matrix.
2. Find the product of the element, the determinant of the 2×2 matrix, and a plus or minus sign. The sign is determined by a "checkboard pattern":

$$
\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

The determinant is the sum of the products.
I'll work through the steps one element at a time. Cross out the row and column containing -1 :

$$
\left|\begin{array}{ccc}
\cdot & \mathbf{- 1} & \cdot \\
4 & \cdot & 2 \\
1 & \cdot & 7
\end{array}\right|
$$

Compute the 2×2 determinant:

$$
\left|\begin{array}{ll}
4 & 2 \\
1 & 7
\end{array}\right|=26
$$

Multiply the element, the 2×2 determinant, and a minus sign:

$$
(-1) \cdot 26 \cdot(-1)=26
$$

Cross out the row and column containing 5:

$$
\left|\begin{array}{ccc}
1 & \cdot & 3 \\
\cdot & \mathbf{5} & \cdot \\
1 & \cdot & 7
\end{array}\right|
$$

Compute the 2×2 determinant:

$$
\left|\begin{array}{ll}
1 & 3 \\
1 & 7
\end{array}\right|=4
$$

Multiply the element, the 2×2 determinant, and a plus sign:

$$
5 \cdot 4 \cdot(+1)=20
$$

Cross out the row and column containing 0 :

$$
\left|\begin{array}{ccc}
1 & \cdot & 3 \\
4 & \cdot & 2 \\
\cdot & \mathbf{0} & \cdot
\end{array}\right|
$$

Compute the 2×2 determinant:

$$
\left|\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right|=-10
$$

Multiply the element, the 2×2 determinant, and a minus sign:

$$
0 \cdot(-10) \cdot(-1)=0
$$

The total is $26+20+0=46$.
As an exericse, try expanding the determinant of this matrix using another row or column and see if you get the same answer.

Example. Compute $\left.\left\lvert\, \begin{array}{ccc}-3 & 1 & 1 \\ 1 & 2 & 1 \\ 5 & -1 & 3\end{array}\right.\right]$.
I'll expand by cofactors of the first row:

$$
\begin{gathered}
\left.\left.\left|\begin{array}{ccc}
-3 & 1 & 1 \\
1 & 2 & 1 \\
5 & -1 & 3
\end{array}\right|=(-3) \right\rvert\, \begin{array}{cc}
2 & 1 \\
-1 & 3
\end{array}\right]-(1)\left|\begin{array}{cc}
1 & 1 \\
5 & 3
\end{array}\right|+(1)\left|\begin{array}{cc}
1 & 2 \\
5 & -1
\end{array}\right|= \\
(-3)(7)-(1)(-2)+(1)(-11)=-30
\end{gathered}
$$

Notice that expansion by cofactors reduces the computation of an $n \times n$ determinant to the computation of $n(n-1) \times(n-1)$ determinants.

There are other approaches you can use to compute determinants. For instance, in linear algebra you learn about row reduction, which provides a fairly efficient way to compute determinants for larger matrices.

Here are some properties of determinants.
Proposition. (a) If A has two equal rows, then $\operatorname{det} A=0$.
(b) If two rows of A are swapped, the value of the determinant is multiplied by -1 :

$$
\operatorname{det}\left[\begin{array}{c}
\vdots \\
\leftarrow \vec{x} \rightarrow \\
\vdots \\
\leftarrow \vec{y} \rightarrow \\
\vdots
\end{array}\right]=-\operatorname{det}\left[\begin{array}{c}
\vdots \\
\leftarrow \vec{y} \rightarrow \\
\vdots \\
\leftarrow \vec{x} \rightarrow \\
\vdots
\end{array}\right]
$$

(c) The determinant of a sum is the sum of the determinants one row at a time:

$$
\operatorname{det}\left[\begin{array}{c}
(\mathrm{FOO}) \\
\leftarrow \vec{x}+\vec{y} \rightarrow \\
(\mathrm{BAR})
\end{array}\right]=\operatorname{det}\left[\begin{array}{c}
(\mathrm{FOO}) \\
\leftarrow \vec{x} \rightarrow \\
(\mathrm{BAR})
\end{array}\right]+\operatorname{det}\left[\begin{array}{c}
(\mathrm{FOO}) \\
\leftarrow \vec{y} \rightarrow \\
(\mathrm{BAR})
\end{array}\right]
$$

(The parts of the matrices labelled "FOO" and "BAR" are the same in all 3 matrices: They don't change. The sum occurs in a single row.)
(d) A number may be factored out of one row of a determinant at a time:

$$
\operatorname{det}\left[\begin{array}{c}
(\mathrm{FOO}) \\
\leftarrow k \cdot \vec{x} \rightarrow \\
(\mathrm{BAR})
\end{array}\right]=k \cdot \operatorname{det}\left[\begin{array}{c}
(\mathrm{FOO}) \\
\leftarrow \vec{x} \rightarrow \\
(\mathrm{BAR})
\end{array}\right]
$$

(e) The determinant of a product is the product of the determinants:

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)
$$

(f) The determinant of the $n \times n$ identity matrix is 1 :

$$
\operatorname{det}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]=1
$$

Proof. The proofs that these properties hold for arbitrary $n \times n$ matrices are fairly involved; you'd see them in a course in linear algebra.

I'll verify that a couple of the properties hold in some special cases.
As an example of (a), here's the determinant of a 3×3 matrix with two equal rows, which I'm computing by expanding by cofactors of row 1 :

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
d & e & f
\end{array}\right]=a \cdot \operatorname{det}\left[\begin{array}{ll}
e & f \\
e & f
\end{array}\right]-b \cdot \operatorname{det}\left[\begin{array}{ll}
d & f \\
d & f
\end{array}\right]+c \cdot \operatorname{det}\left[\begin{array}{ll}
d & e \\
d & e
\end{array}\right]= \\
a(e f-f e)-b(d f-f d)+c(d e-e d)=0
\end{gathered}
$$

Here's an example of (e) with 2×2 matrices,

$$
\left.\left[\begin{array}{cc}
x+x^{\prime} & y+y^{\prime} \\
a & b
\end{array}\right]=\left(x+x^{\prime}\right) \cdot b-\left(y+y^{\prime}\right) \cdot a=(x b-y a)+x^{\prime} b-y^{\prime} a\right)=\operatorname{det}\left[\begin{array}{cc}
x & y \\
a & b
\end{array}\right]+\operatorname{det}\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
a & b
\end{array}\right] .
$$

Some of these properties are illustrated in the following examples.
Example. Suppose that

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=10
$$

Compute:
(a) $\left|\begin{array}{ll}c & d \\ a & b\end{array}\right|$.
(b) $\left|\begin{array}{ll}3 a & 3 b \\ 2 c & 2 d\end{array}\right|$.
(c) $\left|\begin{array}{cc}4 a+c & 4 b+d \\ c & d\end{array}\right|$.
(a) Swapping two rows multiplies the determinant by -1 :

$$
\left|\begin{array}{ll}
c & d \\
a & b
\end{array}\right|=-\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=-10
$$

(b) Factor 3 out of the first row, then factor 2 out of the second row:

$$
\left|\begin{array}{cc}
3 a & 3 b \\
2 c & 2 d
\end{array}\right|=3 \cdot\left|\begin{array}{cc}
a & b \\
2 c & 2 d
\end{array}\right|=2 \cdot 3\left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right|=6 \cdot 10=60
$$

(c) Break up the determinant using a sum of $(4 a, 4 b)$ and (c, d) in the first row. Factor 4 out of the first determinant; the second determinant is 0 because the matrix has two equal rows.

$$
\left|\begin{array}{cc}
4 a+c & 4 b+d \\
c & d
\end{array}\right|=\left|\begin{array}{cc}
4 a & 4 b \\
c & d
\end{array}\right|+\left|\begin{array}{cc}
c & d \\
c & d
\end{array}\right|=4 \cdot\left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right|+0=4 \cdot 10=40
$$

Example. Give specific 2×2 matrices A and B for which

$$
\begin{gathered}
\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B \\
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0 \\
\operatorname{det}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\operatorname{det}\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=1+1=2
\end{gathered}
$$

