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Double Integrals in Polar

It’s often useful to change variables and convert a double integral from rectangular coordinates to polar
coordinates. Suppose you're trying to convert the following integral to polar coordinates:

/ fx,y) dxdy.
D

1. Convert the function f(x,y) to polar by using the polar-rectangular conversion equations:
r? =a2% +y?, tanf = g,
x

x=rcosf, y=rsind.

2. Replace dx dy with r dr df.
3. Describe the region of integration D by inequalities in polar and use the inequalities to change the
limits.

The only thing which requires explanation is why you replace dx dy with r dr df. One way to understand
this is to use the change-of-variables formula for double integrals. This says that

Ooxr O
lor 06 __|cos@ —rsind o 2 . 2 .
drdy = @ @ drdf = sind  rcosf ‘ drdf = [r(cos@) + 7(sin 0) } drdf = rdrdf.
or 00

Heuristically, you can picture this by considering a small wedge of area in the polar grad:

r de
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o

The “box” has height dr and width r df — the width coming from the formula for an arc of radius r
subtended by an angle df. The area of the box should be r dr df.

Vi—z?
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Example. Convert dx dy to polar and compute the integral.
» [ ] e egammiriver pute the nt

This integral would be horrible to compute in rectangular coordinates. In polar, it’s pretty easy.

First, convert the function:
1 1

(22 492 + 1)3/2 B (r? + 1)3/2'
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T’ll replace dx dy with rdr df when I set up the integral.
To convert the limits, pull the original limits off as inequalities:

—1<x<1
—V1—22<y<V1—2a2

Draw the region described by the inequalities. It is the interior of the circle 22 + y? = 1:

Describe the region by inequalities in polar:
0<0<2m
0<r<i1
Put the inequalities on the integral and compute:

1

Vi—zZ? 1 2m 2 1
dx d ————rdrdf = ——| df=
[ orrrmtean= [ [ g = [ -],
2 27
/ ldﬂ—{lﬁ} =T.
o 2 2|,

d
(I did /(2:_:)3/2 by using the substitution u =2 +1.) O
r

Here is a rule of thumb that was evident in the last problem:

Think about converting to polar when the double integral contains terms
of the form z? + y2.

You can use double integrals in polar to compute areas of regions in the z-y-plane. Just as with x-y
double integrals,

// rdrdf gives the area of D.
D

However, you can often use a single integral to compute the area — the double integral is superfluous.
For this reason, the next example isn’t particularly practical; it just illustrates the idea.
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Example. Use a double integral to compute the area of the region inside the cardioid » = 1 + sin 6.

I know the cardioid is traced out once as 6 goes from 0 to 27, so the region inside is described by the

inequalities
0<6<27r
0<r<1-+sinf

The area is given by the double integral
21 1+sin @ 21 1 1+sin 6 27 1 3 1 2m
/ / rdrd&z/ [rz] d@z/ —(1+sinf)?df = [G—QCOSG— sin29} = 3.
o Jo 0 2 1o o 2 2 4 0

(I did the 6 integral by multiplying (1 +sin#)? out, then applying the double angle formula to (sin §)2.)
27
1
Do you notice what happened in the third step? I got the same integral / 5(1 + sin#)% df that I
0

would have gotten using the old single-variable formula

b
1
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It wasn’t necessary to use a double integral to find this area. 0O

oo

Example. Compute/ e~ da.

— 00

This single variable integral is important in probability. Here’s the trick to computing it: Let

o0 2
I:/ e " dux.
—00

The variable in a definite integral is a dummy variable — the value of the integral isn’t changed if I

change the letter. So
(oo}
I :/ eV dy.
—o0

I’ = / / e~ (@) gy dy.

T

Multiply the two equations:

2, and dx dy will be replaced with r dr df. The region is
—00 < x < 400
—o0 <y < +0oo
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Convert to polar: e~ (" +¥") = ¢~



This is the whole z-y plane! In polar, this is
0<6<2m
0<r<+o0

So

o] oo 2m e8] 2m c
I’ = / / e~ @+ gy dy = / / e rdrdd = / < lim / re=" dr) df =
—00 J —00 0 0 0 c— 00 0
27 ) 1 2 c 1 27 ) 2 1 21
/0 (3520 [—26 D d0 = 5/0 (Jim (1= e)) o 5/0 d0 = .

(Idid [re~"" dr using the substitution u = —r2.)
Therefore, I = /7 — that is,

/ e dr = /7. O

— 00

Example. Compute the integral by converting to polar coordinates:

Va2 +y?dxdy

/2 V2z—x2
0 0

V22 +y2 = V1?2 = r, and I'll replace dz dy with r dr d6.
Pull off the limits of integration:

0<xr<2
0<y<+V2zx—2a2
Draw the region described by the inequalities. Do the “number” inequalities first. 0 < x < 2 tells you

the region is between the vertical lines x = 0 and = = 2.

The y-inequalities 0 < y < v/2x — 22 tell you that the top curve for the region is y = v/22 — 22 and the
bottom curve is y = 0 — the same kind of thing you do when you used (single) integrals to compute the
area between curves.

To recognize y = v/2x — 2, complete the square:

=

v =2z — 2?
22 =22 +9y*=0

224+ 14+9°=1

(-1 +y*=1
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y = V2x — z? is the top half of a circle of radius 1 centered at (1,0). Here’s the picture:

top

y= N2x-x2

The region!

Now I describe the region in polar. Convert the circle to polar:

2 —224+9y2=0
22 +y? =2
r2 = 2rcosf

r=2cosf

The top half is traced out as 6 goes from 0 to g — think of a searchlight beam turning to trace out the
curve:

0=rm/2

T

—» 0=0

Therefore, the polar inequalities are

So
2 cos O

7/2 p2cosf /2 1 ] /2
\/x2+y2dxdy:/ / r~7‘drd9:/ 3 d9:f/ (cos§) df =
0 0 0 3 3Jo

2 pV2x—22
/0 0 0

8 7\'/2

7/ (1— (sin6)?) (cos@) db = —.
3 Jo 9
(I did the 6 integral with the substitution v = sinf.) O
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Example. Compute the volume of the region 22 + 7% +1 < 2z < 2.

Here is the region:

The “bowl” is the surface z = z2 + 3% + 1.
The intersection of z =2 and z = 22 + 9% + 1 is

2=2+y*+1, or z*4y*=1.

This is the curve where the bowl hits the plane, and you can see it’s the unit circle (moved up to z = 2

Hence, if you project the region down into the x-y plane, you'll get the interior of the circle z2 + 42 =
T’ll convert to polar. The projection is
0<6<2m
{ 0<r<i1 }

To find the volume, I integrate top — bottom, which is

).

2— (@ +yP+1)=1-2?—¢y*=1-1r2

Since I'm converting to polar, I replace dx dy with r dr df. The volume is

2 pl 2 pl 27 1 1 1
V:/ / (1 —7®)rdrdd = / / (r—r3)drdf = / |:’I“2 — ’I“4:| de =
o Jo o Jo 0 4
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