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Double Integrals in Polar

It’s often useful to change variables and convert a double integral from rectangular coordinates to polar
coordinates. Suppose you’re trying to convert the following integral to polar coordinates:

∫∫

D

f(x, y) dx dy.

1. Convert the function f(x, y) to polar by using the polar-rectangular conversion equations:

r2 = x2 + y2, tan θ =
y

x
,

x = r cos θ, y = r sin θ.

2. Replace dx dy with r dr dθ.

3. Describe the region of integration D by inequalities in polar and use the inequalities to change the
limits.

The only thing which requires explanation is why you replace dx dy with r dr dθ. One way to understand
this is to use the change-of-variables formula for double integrals. This says that
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dr dθ =
[

r(cos θ)2 + r(sin θ)2
]

dr dθ = r dr dθ.

Heuristically, you can picture this by considering a small wedge of area in the polar grad:

dθ

dr

r

dθr

O

The “box” has height dr and width r dθ — the width coming from the formula for an arc of radius r

subtended by an angle dθ. The area of the box should be r dr dθ.

Example. Convert

∫ 1

−1

∫

√
1−x2

−
√
1−x2

1

(x2 + y2 + 1)3/2
dx dy to polar and compute the integral.

This integral would be horrible to compute in rectangular coordinates. In polar, it’s pretty easy.
First, convert the function:

1

(x2 + y2 + 1)3/2
=

1

(r2 + 1)3/2
.
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I’ll replace dx dy with r dr dθ when I set up the integral.
To convert the limits, pull the original limits off as inequalities:

{

−1 ≤ x ≤ 1
−
√
1− x2 ≤ y ≤

√
1− x2

}

Draw the region described by the inequalities. It is the interior of the circle x2 + y2 = 1:

1

1

Describe the region by inequalities in polar:

{

0 ≤ θ ≤ 2π
0 ≤ r ≤ 1

}

Put the inequalities on the integral and compute:

∫ 1

−1

∫

√
1−x2

−
√
1−x2

1

(x2 + y2 + 1)3/2
dx dy =

∫ 2π

0

∫ 1

0

1

(r2 + 1)3/2
· r dr dθ =

∫ 2π

0

[

− 1√
r2 + 1

]1

0

dθ =

∫ 2π

0

1

2
dθ =

[

1

2
θ

]2π

0

= π.

(I did

∫

r dr

(r2 + 1)3/2
by using the substitution u = r2 + 1.)

Here is a rule of thumb that was evident in the last problem:

Think about converting to polar when the double integral contains terms
of the form x2 + y2.

You can use double integrals in polar to compute areas of regions in the x-y-plane. Just as with x-y
double integrals,

∫∫

D

r dr dθ gives the area of D.

However, you can often use a single integral to compute the area — the double integral is superfluous.
For this reason, the next example isn’t particularly practical; it just illustrates the idea.
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Example. Use a double integral to compute the area of the region inside the cardioid r = 1 + sin θ.
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I know the cardioid is traced out once as θ goes from 0 to 2π, so the region inside is described by the
inequalities

{

0 ≤ θ ≤ 2π
0 ≤ r ≤ 1 + sin θ

}

The area is given by the double integral

∫ 2π

0

∫ 1+sin θ

0

r dr dθ =

∫ 2π

0

[

1

2
r2
]1+sin θ

0

dθ =

∫ 2π

0

1

2
(1 + sin θ)2 dθ =

[

3

2
θ − 2 cos θ − 1

4
sin 2θ

]2π

0

= 3π.

(I did the θ integral by multiplying (1+ sin θ)2 out, then applying the double angle formula to (sin θ)2.)

Do you notice what happened in the third step? I got the same integral

∫ 2π

0

1

2
(1 + sin θ)2 dθ that I

would have gotten using the old single-variable formula

∫ b

a

1

2
r2 dθ.

It wasn’t necessary to use a double integral to find this area.

Example. Compute

∫ ∞

−∞

e−x2

dx.

This single variable integral is important in probability. Here’s the trick to computing it: Let

I =

∫ ∞

−∞

e−x2

dx.

The variable in a definite integral is a dummy variable — the value of the integral isn’t changed if I
change the letter. So

I =

∫ ∞

−∞

e−y2

dy.

Multiply the two equations:

I2 =

∫ ∞

−∞

∫ ∞

−∞

e−(x2+y2) dx dy.

Convert to polar: e−(x2+y2) = e−r2 , and dx dy will be replaced with r dr dθ. The region is

{

−∞ < x < +∞
−∞ < y < +∞

}
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This is the whole x-y plane! In polar, this is

{

0 ≤ θ ≤ 2π
0 ≤ r < +∞

}

So

I2 =

∫ ∞

−∞

∫ ∞

−∞

e−(x2+y2) dx dy =

∫ 2π

0

∫ ∞

0

e−r2 · r dr dθ =

∫ 2π

0

(

lim
c→∞

∫ c

0

re−r2 dr

)

dθ =

∫ 2π

0

(

lim
c→∞

[

−1

2
e−r2

]c

0

)

dθ =
1

2

∫ 2π

0

(

lim
c→∞

(1− e−c2)
)

dθ =
1

2

∫ 2π

0

dθ = π.

(I did
∫

re−r2 dr using the substitution u = −r2.)

Therefore, I =
√
π — that is,

∫ ∞

−∞

e−x2

dx =
√
π.

Example. Compute the integral by converting to polar coordinates:

∫ 2

0

∫

√
2x−x2

0

√

x2 + y2 dx dy

√

x2 + y2 =
√
r2 = r, and I’ll replace dx dy with r dr dθ.

Pull off the limits of integration:
{

0 ≤ x ≤ 2
0 ≤ y ≤

√
2x− x2

}

Draw the region described by the inequalities. Do the “number” inequalities first. 0 ≤ x ≤ 2 tells you
the region is between the vertical lines x = 0 and x = 2.

The y-inequalities 0 ≤ y ≤
√
2x− x2 tell you that the top curve for the region is y =

√
2x− x2 and the

bottom curve is y = 0 — the same kind of thing you do when you used (single) integrals to compute the
area between curves.

To recognize y =
√
2x− x2, complete the square:

y =
√

2x− x2

y2 = 2x− x2

x2 − 2x+ y2 = 0

x2 − 2x+ 1 + y2 = 1

(x− 1)2 + y2 = 1
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y =
√
2x− x2 is the top half of a circle of radius 1 centered at (1, 0). Here’s the picture:

x =  0 x =  0x =  2 x =  2

y =  0

y =     2x - x2

y =     2x - x2

top

bottom

2

The region!

Now I describe the region in polar. Convert the circle to polar:

x2 − 2x+ y2 = 0

x2 + y2 = 2x

r2 = 2r cos θ

r = 2 cos θ

The top half is traced out as θ goes from 0 to
π

2
— think of a searchlight beam turning to trace out the

curve:

θ = 0

θ = π/2

Therefore, the polar inequalities are

{

0 ≤ θ ≤ π

2
0 ≤ r ≤ 2 cos θ

}

So

∫ 2

0

∫

√
2x−x2

0

√

x2 + y2 dx dy =

∫ π/2

0

∫ 2 cos θ

0

r · r dr dθ =

∫ π/2

0

[

1

3
r3
]2 cos θ

0

dθ =
8

3

∫ π/2

0

(cos θ)3 dθ =

8

3

∫ π/2

0

(

1− (sin θ)2
)

(cos θ) dθ =
16

9
.

(I did the θ integral with the substitution u = sin θ.)
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Example. Compute the volume of the region x2 + y2 + 1 ≤ z ≤ 2.

Here is the region:
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The “bowl” is the surface z = x2 + y2 + 1.
The intersection of z = 2 and z = x2 + y2 + 1 is

2 = x2 + y2 + 1, or x2 + y2 = 1.

This is the curve where the bowl hits the plane, and you can see it’s the unit circle (moved up to z = 2).
Hence, if you project the region down into the x-y plane, you’ll get the interior of the circle x2+ y2 = 1.

I’ll convert to polar. The projection is
{

0 ≤ θ ≤ 2π
0 ≤ r ≤ 1

}

To find the volume, I integrate top− bottom, which is

2− (x2 + y2 + 1) = 1− x2 − y2 = 1− r2.

Since I’m converting to polar, I replace dx dy with r dr dθ. The volume is

V =

∫ 2π

0

∫ 1

0

(1− r2)r dr dθ =

∫ 2π

0

∫ 1

0

(r − r3) dr dθ =

∫ 2π

0

[

1

2
r2 − 1

4
r4
]1

0

dθ =

1

4

∫ 2π

0

dθ =
π

2
.
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