Double Integrals in Polar

It's often useful to change variables and convert a double integral from rectangular coordinates to polar coordinates. Suppose you're trying to convert the following integral to polar coordinates:

$$
\iint_{D} f(x, y) d x d y
$$

1. Convert the function $f(x, y)$ to polar by using the polar-rectangular conversion equations:

$$
\begin{aligned}
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x} \\
x=r \cos \theta, \quad y=r \sin \theta
\end{aligned}
$$

2. Replace $d x d y$ with $r d r d \theta$.
3. Describe the region of integration D by inequalities in polar and use the inequalities to change the limits.

The only thing which requires explanation is why you replace $d x d y$ with $r d r d \theta$. One way to understand this is to use the change-of-variables formula for double integrals. This says that

$$
d x d y=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right| d r d \theta=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| d r d \theta=\left[r(\cos \theta)^{2}+r(\sin \theta)^{2}\right] d r d \theta=r d r d \theta
$$

Heuristically, you can picture this by considering a small wedge of area in the polar grad:

The "box" has height $d r$ and width $r d \theta$ - the width coming from the formula for an arc of radius r subtended by an angle $d \theta$. The area of the box should be $r d r d \theta$.

Example. Convert $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\left(x^{2}+y^{2}+1\right)^{3 / 2}} d x d y$ to polar and compute the integral.
This integral would be horrible to compute in rectangular coordinates. In polar, it's pretty easy.
First, convert the function:

$$
\frac{1}{\left(x^{2}+y^{2}+1\right)^{3 / 2}}=\frac{1}{\left(r^{2}+1\right)^{3 / 2}}
$$

I'll replace $d x d y$ with $r d r d \theta$ when I set up the integral.
To convert the limits, pull the original limits off as inequalities:

$$
\left\{\begin{aligned}
-1 & \leq x \leq 1 \\
-\sqrt{1-x^{2}} & \leq y \leq \sqrt{1-x^{2}}
\end{aligned}\right\}
$$

Draw the region described by the inequalities. It is the interior of the circle $x^{2}+y^{2}=1$:

Describe the region by inequalities in polar:

$$
\left\{\begin{array}{c}
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq 1
\end{array}\right\}
$$

Put the inequalities on the integral and compute:

$$
\begin{gathered}
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\left(x^{2}+y^{2}+1\right)^{3 / 2}} d x d y=\int_{0}^{2 \pi} \int_{0}^{1} \frac{1}{\left(r^{2}+1\right)^{3 / 2}} \cdot r d r d \theta=\int_{0}^{2 \pi}\left[-\frac{1}{\sqrt{r^{2}+1}}\right]_{0}^{1} d \theta= \\
\int_{0}^{2 \pi} \frac{1}{2} d \theta=\left[\frac{1}{2} \theta\right]_{0}^{2 \pi}=\pi
\end{gathered}
$$

(I did $\int \frac{r d r}{\left(r^{2}+1\right)^{3 / 2}}$ by using the substitution $u=r^{2}+1$.) \square

Here is a rule of thumb that was evident in the last problem:

Think about converting to polar when the double integral contains terms of the form $x^{2}+y^{2}$.

You can use double integrals in polar to compute areas of regions in the $x-y$-plane. Just as with $x-y$ double integrals,

$$
\iint_{D} r d r d \theta \text { gives the area of } D \text {. }
$$

However, you can often use a single integral to compute the area - the double integral is superfluous. For this reason, the next example isn't particularly practical; it just illustrates the idea.

Example. Use a double integral to compute the area of the region inside the cardioid $r=1+\sin \theta$.

I know the cardioid is traced out once as θ goes from 0 to 2π, so the region inside is described by the inequalities

$$
\left\{\begin{array}{c}
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq 1+\sin \theta
\end{array}\right\}
$$

The area is given by the double integral

$$
\int_{0}^{2 \pi} \int_{0}^{1+\sin \theta} r d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{2} r^{2}\right]_{0}^{1+\sin \theta} d \theta=\int_{0}^{2 \pi} \frac{1}{2}(1+\sin \theta)^{2} d \theta=\left[\frac{3}{2} \theta-2 \cos \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi}=3 \pi
$$

(I did the θ integral by multiplying $(1+\sin \theta)^{2}$ out, then applying the double angle formula to $(\sin \theta)^{2}$.)
Do you notice what happened in the third step? I got the same integral $\int_{0}^{2 \pi} \frac{1}{2}(1+\sin \theta)^{2} d \theta$ that I would have gotten using the old single-variable formula

$$
\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

It wasn't necessary to use a double integral to find this area.

Example. Compute $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.
This single variable integral is important in probability. Here's the trick to computing it: Let

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

The variable in a definite integral is a dummy variable - the value of the integral isn't changed if I change the letter. So

$$
I=\int_{-\infty}^{\infty} e^{-y^{2}} d y
$$

Multiply the two equations:

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

Convert to polar: $e^{-\left(x^{2}+y^{2}\right)}=e^{-r^{2}}$, and $d x d y$ will be replaced with $r d r d \theta$. The region is

$$
\left\{\begin{array}{l}
-\infty<x<+\infty \\
-\infty<y<+\infty
\end{array}\right\}
$$

This is the whole $x-y$ plane! In polar, this is

$$
\left\{\begin{array}{c}
0 \leq \theta \leq 2 \pi \\
0 \leq r<+\infty
\end{array}\right\}
$$

So

$$
\begin{aligned}
I^{2}= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} \cdot r d r d \theta=\int_{0}^{2 \pi}\left(\lim _{c \rightarrow \infty} \int_{0}^{c} r e^{-r^{2}} d r\right) d \theta= \\
& \int_{0}^{2 \pi}\left(\lim _{c \rightarrow \infty}\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{c}\right) d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left(\lim _{c \rightarrow \infty}\left(1-e^{-c^{2}}\right)\right) d \theta=\frac{1}{2} \int_{0}^{2 \pi} d \theta=\pi .
\end{aligned}
$$

(I did $\int r e^{-r^{2}} d r$ using the substitution $u=-r^{2}$.)
Therefore, $I=\sqrt{\pi}$ - that is,

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Example. Compute the integral by converting to polar coordinates:

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d x d y
$$

$\sqrt{x^{2}+y^{2}}=\sqrt{r^{2}}=r$, and I'll replace $d x d y$ with $r d r d \theta$.
Pull off the limits of integration:

$$
\left\{\begin{aligned}
0 & \leq x \leq 2 \\
0 \leq y & \leq \sqrt{2 x-x^{2}}
\end{aligned}\right\}
$$

Draw the region described by the inequalities. Do the "number" inequalities first. $0 \leq x \leq 2$ tells you the region is between the vertical lines $x=0$ and $x=2$.

The y-inequalities $0 \leq y \leq \sqrt{2 x-x^{2}}$ tell you that the top curve for the region is $y=\sqrt{2 x-x^{2}}$ and the bottom curve is $y=0$ - the same kind of thing you do when you used (single) integrals to compute the area between curves.

To recognize $y=\sqrt{2 x-x^{2}}$, complete the square:

$$
\begin{aligned}
y & =\sqrt{2 x-x^{2}} \\
y^{2} & =2 x-x^{2} \\
x^{2}-2 x+y^{2} & =0 \\
x^{2}-2 x+1+y^{2} & =1 \\
(x-1)^{2}+y^{2} & =1
\end{aligned}
$$

$y=\sqrt{2 x-x^{2}}$ is the top half of a circle of radius 1 centered at $(1,0)$. Here's the picture:

Now I describe the region in polar. Convert the circle to polar:

$$
\begin{aligned}
x^{2}-2 x+y^{2} & =0 \\
x^{2}+y^{2} & =2 x \\
r^{2} & =2 r \cos \theta \\
r & =2 \cos \theta
\end{aligned}
$$

The top half is traced out as θ goes from 0 to $\frac{\pi}{2}$ — think of a searchlight beam turning to trace out the curve:

Therefore, the polar inequalities are

$$
\left\{\begin{array}{c}
0 \leq \theta \leq \frac{\pi}{2} \\
0 \leq r \leq 2 \cos \theta
\end{array}\right\}
$$

So

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d x d y= & \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r \cdot r d r d \theta=\int_{0}^{\pi / 2}\left[\frac{1}{3} r^{3}\right]_{0}^{2 \cos \theta} d \theta=\frac{8}{3} \int_{0}^{\pi / 2}(\cos \theta)^{3} d \theta= \\
& \frac{8}{3} \int_{0}^{\pi / 2}\left(1-(\sin \theta)^{2}\right)(\cos \theta) d \theta=\frac{16}{9}
\end{aligned}
$$

(I did the θ integral with the substitution $u=\sin \theta$.) $\quad \square$

Example. Compute the volume of the region $x^{2}+y^{2}+1 \leq z \leq 2$.
Here is the region:

The "bowl" is the surface $z=x^{2}+y^{2}+1$.
The intersection of $z=2$ and $z=x^{2}+y^{2}+1$ is

$$
2=x^{2}+y^{2}+1, \quad \text { or } \quad x^{2}+y^{2}=1
$$

This is the curve where the bowl hits the plane, and you can see it's the unit circle (moved up to $z=2$).
Hence, if you project the region down into the $x-y$ plane, you'll get the interior of the circle $x^{2}+y^{2}=1$.
I'll convert to polar. The projection is

$$
\left\{\begin{array}{c}
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq 1
\end{array}\right\}
$$

To find the volume, I integrate top - bottom, which is

$$
2-\left(x^{2}+y^{2}+1\right)=1-x^{2}-y^{2}=1-r^{2}
$$

Since I'm converting to polar, I replace $d x d y$ with $r d r d \theta$. The volume is

$$
\begin{aligned}
V=\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta= & \int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{3}\right) d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right]_{0}^{1} d \theta= \\
& \frac{1}{4} \int_{0}^{2 \pi} d \theta=\frac{\pi}{2} .
\end{aligned}
$$

