Double Integrals

A double integral is an integral

$$
\iint_{R} f(x, y) d x d y
$$

R is a region in \mathbb{R}^{2}, and $f(x, y)$ is an integrable function.
Under appropriate conditions - for example, if f is continuous function - you can compute a double integral as an iterated integral:

$$
\iint_{R} f(x, y) d x d y=\int_{a}^{b}\left(\int_{u(x)}^{v(x)} f(x, y) d y\right) d x \quad \text { or } \quad \iint_{R} f(x, y) d x d y=\int_{c}^{d}\left(\int_{p(y)}^{q(y)} f(x, y) d x\right) d y
$$

In the first case, the region is described by inequalities

$$
R=\left\{\begin{array}{c}
a \leq x \leq b \\
u(x) \leq y \leq v(x)
\end{array}\right\}
$$

In the second case, the region is described by inequalities

$$
R=\left\{\begin{array}{c}
c \leq y \leq d \\
p(y) \leq x \leq q(y)
\end{array}\right\}
$$

Example. Compute

$$
\iint_{R}(4 x-6 y+3) d x d y, \quad \text { where } \quad R=\left\{\begin{array}{c}
0 \leq x \leq 1 \\
-1 \leq y \leq 1
\end{array}\right\}
$$

I may compute the double integral as an iterated integral, integrating with respect to one variable at a time while holding the other variable constant.

Since all the limits are numbers, I can integrate first with respect to x and then with respect to y, or the other way around. In this problem, there is no reason to prefer one order to another.

$$
\int_{-1}^{1} \int_{0}^{1}(4 x-6 y+3) d x d y=\int_{-1}^{1}\left[2 x^{2}-6 x y+3 x\right]_{0}^{1} d y=\int_{-1}^{1}(5-6 y) d y=\left[5 y-3 y^{2}\right]_{-1}^{1}=10
$$

Notice how the limits of integration are matched with the integration variable from inside out:

$$
\int_{-1}^{1} \int_{0}^{1}(4 x-6 y+3) d x d y
$$

Thus, you integrate with respect to x first (holding y constant), then with respect to y. You might try doing this integral in the other order, with respect to y and then x :

$$
\int_{0}^{1} \int_{-1}^{1}(4 x-6 y+3) d y d x
$$

You should get the same answer. $\quad \square$

Example. Sketch the region of integration for the double integral:
(a) $\int_{-1}^{1} \int_{0}^{2} f(x, y) d x d y$.
(b) $\int_{0}^{2} \int_{0}^{x^{2}} f(x, y) d y d x$.
(a)

(b)

Example. Compute

$$
\iint_{R} \cos e^{x} d x d y, \quad \text { where } \quad R=\left\{\begin{array}{c}
0 \leq x \leq 1 \\
0 \leq y \leq e^{x}
\end{array}\right\}
$$

Note that since y has a variable limit, I must integrate with respect to y first, then x. When I integrate with respect to y, I hold x constant. Thus, the term "cos $e^{x "}$ is constant with respect to y when I do the first integration.

$$
\int_{0}^{1} \int_{0}^{e^{x}} \cos e^{x} d y d y=\int_{0}^{1}\left[y \cos e^{x}\right]_{0}^{e^{x}} d x=\int_{0}^{1} e^{x} \cos e^{x} d x=\int_{1}^{e} e^{x} \cos u \cdot \frac{d u}{e^{x}}=
$$

$$
\begin{gathered}
{\left[u=e^{x}, \quad d u=e^{x} d x, \quad d x=\frac{d u}{e^{x}} ; \quad x=0, u=1 ; x=1, u=e\right]} \\
\int_{1}^{e} \cos u d u=[\sin u]_{1}^{e}=\sin e-\sin 1=-0.43068 \ldots .
\end{gathered}
$$

Example. Compute

$$
\begin{gathered}
\iint_{R} e^{\left(3 y-y^{3}\right)} d x d y, \quad \text { where } \quad R=\left\{\begin{array}{l}
y^{2} \leq x \leq 1 \\
-1 \leq y \leq 1
\end{array}\right\} . \\
\int_{-1}^{1} \int_{y^{2}}^{1} e^{\left(3 y-y^{3}\right)} d x d y=\int_{-1}^{1}\left[x e^{\left(3 y-y^{3}\right)}\right]_{y^{2}}^{1} d y=\int_{-1}^{1}\left(1-y^{2}\right) e^{\left(3 y-y^{3}\right)} d y=\int_{?}^{?}\left(1-y^{2}\right) e^{u} \cdot \frac{d u}{3\left(1-y^{2}\right)}= \\
{\left[u=3 y-y^{3}, \quad d u=3\left(1-y^{2}\right) d y, \quad d y=\frac{d u}{3\left(1-y^{2}\right)}\right]} \\
\frac{1}{3} \int_{?}^{?} e^{u} d u=\frac{1}{3}\left[e^{u}\right]_{?}^{?}=\frac{1}{3}\left[e^{\left(3 y-y^{3}\right)}\right]_{-1}^{1}=\frac{1}{3}\left(e^{2}-e^{-2}\right)=2.41790 \ldots \quad
\end{gathered}
$$

The double integral over a region R of the constant function 1 is just the area of R.

$$
\iint_{R} 1 d x d y=\operatorname{area}(R) .
$$

Example. Evaluate the integral without computing any antiderivatives:

$$
\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y d x
$$

The region is

$$
\left\{\begin{array}{c}
0 \leq x \leq 2 \\
-\sqrt{4-x^{2}} \leq y \leq \sqrt{4-x^{2}}
\end{array}\right\}
$$

Note that $y= \pm \sqrt{4-x^{2}}$ gives $x^{2}+y^{2}=4$. But we're only looking at the part from $x=0$ to $x=2$.

The region is a half circle of radius 2 , whose area is

$$
\frac{1}{2} \pi \cdot 2^{2}=2 \pi
$$

Hence,

$$
\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y d x=2 \pi
$$

Example. Evaluate the integral without computing any antiderivatives:

$$
\int_{0}^{4} \int_{0}^{(12-3 x) / 4} d y d x
$$

The region is

$$
\left\{\begin{array}{c}
0 \leq x \leq 4 \\
0 \leq y \leq \frac{12-3 x}{4}
\end{array}\right\}
$$

Now $y=\frac{12-3 x}{4}$ gives $3 x+4 y=12$, a line with x-intercept 4 and y-intercept 3 .

The region is a triangle in the first quadrant, whose area is

$$
\int_{0}^{4} \int_{0}^{(12-3 x) / 4} d y d x=\frac{1}{2} \cdot 4 \cdot 3=6
$$

Multiple integrals satisfy the monotonicity condition: "Bigger functions give bigger integrals". Proposition. Suppose f and g are integrable on a region R and $f(x) \geq g(x)$ for all $x \in R$. Then

$$
\int_{R} f \geq \int_{R} g
$$

Example. Suppose $f(x, y) \geq 6 x y$ for all (x, y). Use this to obtain a lower bound for

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x \\
\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x \geq \int_{0}^{1} \int_{0}^{x} 6 x y d y d x=\int_{0}^{1}\left[3 x y^{2}\right]_{0}^{x} d x=\int_{0}^{1} 3 x^{3} d x= \\
{\left[\frac{3}{4} x^{4}\right]_{0}^{1}=\frac{3}{4}}
\end{gathered}
$$

Thus,

$$
\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x \geq \frac{3}{4}
$$

