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Double Integrals

//R f(z,y) de dy.

R is a region in R?, and f(z,y) is an integrable function.
Under appropriate conditions — for example, if f is continuous function — you can compute a double
integral as an iterated integral:
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In the first case, the region is described by inequalities
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A double integral is an integral

In the second case, the region is described by inequalities
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Example. Compute

0<zx<1
//R(4x—6y+3)dxdy, where R_{—lgygl}'

I may compute the double integral as an iterated integral, integrating with respect to one variable at a
time while holding the other variable constant.

Since all the limits are numbers, I can integrate first with respect to x and then with respect to y, or
the other way around. In this problem, there is no reason to prefer one order to another.
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Notice how the limits of integration are matched with the integration variable from inside out:
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Thus, you integrate with respect to z first (holding y constant), then with respect to y.
You might try doing this integral in the other order, with respect to y and then z:
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You should get the same answer.

Example. Sketch the region of integration for the double integral:

@ [ 11 / " fay) do dy.

o [ 2 / " fovy) dyda.
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Example. Compute
z _J o<z <1
//Rcose dr dy, where R_{Ogyge“}'

Note that since y has a variable limit, I must integrate with respect to y first, then . When I integrate
with respect to y, I hold = constant. Thus, the term “cose”” is constant with respect to y when I do the
first integration.

1 pe” 1 - 1 e du
/ / cose” dydy = / [ycose®]; dx = / e*cose® dr = / e’ cosu - — =
0o Jo 0 0 1 €

2



du
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Example. Compute
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//Re dx dy, where R_{—lgySI .
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The double integral over a region R of the constant function 1 is just the area of R.

//R 1dx dy = area(R).

Example. Evaluate the integral without computing any antiderivatives:
2 pVA—zx?
/ / dy dz.
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The region is
0<xr<2
—Va4d—22<y<vid—2a?

Note that y = £v/4 — 22 gives 22 + y% = 4. But we’re only looking at the part from =0 to x = 2.
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The region is a half circle of radius 2, whose area is
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Hence,

Va—zZ?
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Example. Evaluate the integral without computing any antiderivatives:

4 p(12-3z)/4
/ / dy dz.
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The region is

12 — 3z

Now y = gives 3z 4+ 4y = 12, a line with z-intercept 4 and y-intercept 3.
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The region is a triangle in the first quadrant, whose area is

4 (12-3x)/4 1
// dydr==-4-3=6. 0O
o Jo 2

Multiple integrals satisfy the monotonicity condition: “Bigger functions give bigger integrals”.

Proposition. Suppose f and g are integrable on a region R and f(x) > g(z) for all € R. Then
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Example. Suppose f(x,y) > 6zy for all (z,y). Use this to obtain a lower bound for

//fxydydx
1 1 yx 1 1
//f(x,y)dyde/ / 6xydydm=/ [3xy2]§dm=/ 32% dx =
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Thus,
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