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Double Integrals

A double integral is an integral
∫∫

R

f(x, y) dx dy.

R is a region in R
2, and f(x, y) is an integrable function.

Under appropriate conditions — for example, if f is continuous function — you can compute a double
integral as an iterated integral:

∫∫

R

f(x, y) dx dy =

∫ b

a

(

∫ v(x)

u(x)

f(x, y) dy

)

dx or

∫∫

R

f(x, y) dx dy =

∫ d

c

(

∫ q(y)

p(y)

f(x, y) dx

)

dy.

In the first case, the region is described by inequalities

R =

{

a ≤ x ≤ b

u(x) ≤ y ≤ v(x)

}

.

In the second case, the region is described by inequalities

R =

{

c ≤ y ≤ d

p(y) ≤ x ≤ q(y)

}

.

Example. Compute
∫∫

R

(4x− 6y + 3) dx dy, where R =

{

0 ≤ x ≤ 1
−1 ≤ y ≤ 1

}

.

I may compute the double integral as an iterated integral, integrating with respect to one variable at a
time while holding the other variable constant.

Since all the limits are numbers, I can integrate first with respect to x and then with respect to y, or
the other way around. In this problem, there is no reason to prefer one order to another.

∫ 1

−1

∫ 1

0

(4x− 6y + 3) dx dy =

∫ 1

−1

[

2x2 − 6xy + 3x
]1

0
dy =

∫ 1

−1

(5− 6y) dy =
[

5y − 3y2
]1

−1
= 10.

Notice how the limits of integration are matched with the integration variable from inside out:
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Thus, you integrate with respect to x first (holding y constant), then with respect to y.
You might try doing this integral in the other order, with respect to y and then x:

∫ 1

0

∫ 1

−1

(4x− 6y + 3) dy dx.

You should get the same answer.

Example. Sketch the region of integration for the double integral:

(a)

∫ 1

−1

∫ 2

0

f(x, y) dx dy.

(b)

∫ 2

0

∫ x2

0

f(x, y) dy dx.

(a)

x

y

1

-1

2

(b)

x

y

2

Example. Compute
∫∫

R

cos ex dx dy, where R =

{

0 ≤ x ≤ 1
0 ≤ y ≤ ex

}

.

Note that since y has a variable limit, I must integrate with respect to y first, then x. When I integrate
with respect to y, I hold x constant. Thus, the term “cos ex” is constant with respect to y when I do the
first integration.

∫ 1

0

∫ ex

0

cos ex dy dy =

∫ 1

0

[y cos ex]
ex

0 dx =

∫ 1

0

ex cos ex dx =

∫ e

1

ex cosu · du
ex

=

2



[

u = ex, du = ex dx, dx =
du

ex
; x = 0, u = 1;x = 1, u = e

]

∫ e

1

cosu du = [sinu]
e
1 = sin e− sin 1 = −0.43068 . . . .

Example. Compute
∫∫

R

e(3y−y3) dx dy, where R =

{

y2 ≤ x ≤ 1
−1 ≤ y ≤ 1

}

.

∫ 1

−1

∫ 1

y2

e(3y−y3) dx dy =

∫ 1

−1

[

xe(3y−y3)
]1

y2

dy =

∫ 1

−1

(1− y2)e(3y−y3) dy =

∫ ?

?

(1− y2)eu · du

3(1− y2)
=

[

u = 3y − y3, du = 3(1− y2) dy, dy =
du

3(1− y2)

]

1

3

∫ ?

?

eu du =
1

3
[eu]

?
? =

1

3

[

e(3y−y3)
]1

−1
=

1

3

(

e2 − e−2
)

= 2.41790 . . . .

The double integral over a region R of the constant function 1 is just the area of R.

∫∫

R

1 dx dy = area(R).

Example. Evaluate the integral without computing any antiderivatives:

∫ 2

0

∫

√

4−x2

−

√

4−x2

dy dx.

The region is
{

0 ≤ x ≤ 2
−
√
4− x2 ≤ y ≤

√
4− x2

}

Note that y = ±
√
4− x2 gives x2 + y2 = 4. But we’re only looking at the part from x = 0 to x = 2.

y

x
2

The region is a half circle of radius 2, whose area is

1

2
π · 22 = 2π.
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Hence,
∫ 2

0

∫

√

4−x2

−

√

4−x2

dy dx = 2π.

Example. Evaluate the integral without computing any antiderivatives:
∫ 4

0

∫ (12−3x)/4

0

dy dx.

The region is
{

0 ≤ x ≤ 4

0 ≤ y ≤ 12− 3x

4

}

Now y =
12− 3x

4
gives 3x+ 4y = 12, a line with x-intercept 4 and y-intercept 3.

3

4
x

y

The region is a triangle in the first quadrant, whose area is
∫ 4

0

∫ (12−3x)/4

0

dy dx =
1

2
· 4 · 3 = 6.

Multiple integrals satisfy the monotonicity condition: “Bigger functions give bigger integrals”.

Proposition. Suppose f and g are integrable on a region R and f(x) ≥ g(x) for all x ∈ R. Then
∫

R

f ≥
∫

R

g.

Example. Suppose f(x, y) ≥ 6xy for all (x, y). Use this to obtain a lower bound for
∫ 1

0

∫ x

0

f(x, y) dy dx.

∫ 1

0

∫ x

0

f(x, y) dy dx ≥
∫ 1

0

∫ x

0

6xy dy dx =

∫ 1

0

[

3xy2
]x

0
dx =

∫ 1

0

3x3 dx =

[

3

4
x4

]1

0

=
3

4
.

Thus,
∫ 1

0

∫ x

0

f(x, y) dy dx ≥ 3

4
.
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