Euclidean Space

The real numbers are denoted by \mathbb{R}. I'll assume you're familiar with the basic properties of \mathbb{R}, but I'll mention less familiar things as they come up.

The standard 2-dimensional plane is denoted \mathbb{R}^{2}. It consists of ordered pairs of real numbers:

$$
\mathbb{R}^{2}=\{(x, y) \mid x, y \in \mathbb{R}\}
$$

You're probably familiar with how a point (x, y) is located in the plane:

The " x " and " y " on the axes label the positive x-axis and positive y-axis.
Similarly, 3-dimensional space is denoted \mathbb{R}^{3}. It consists of ordered triples of real numbers:

$$
\mathbb{R}^{3}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}
$$

(There are also $\mathbb{R}^{4}, \mathbb{R}^{5}$, and so on, defined in similar fashion.)
Just as it's conventional to use x and y to denote the first and second coordinate variables in \mathbb{R}^{2}, it is conventional to use x, y, and z to denote the first, second, and third coordinate variables in \mathbb{R}^{3}. The picture shows how a typical point (x, y, z) is located in space:

The " x ", " y ", and " z " on the axes label the positive x-axis, the positive y-axis, and the positive z-axis. At this point, I should note a convention that we'll always follow. The labelling of the positive axes in \mathbb{R}^{2} and \mathbb{R}^{3} follow the "right-hand rule". In the x - y-plane, you curl the fingers of your right hand from the positive x-axis to the positive y-axis through a 90° angle. Check for yourself with the picture above.
(Note that in some computer graphics applications - for instance, in the SVG graphics language it's conventional to have the positive y-axis going "downward" rather than "upward".)

For \mathbb{R}^{3}, curl the fingers of your right hand from the positive x-axis to the positive y-axis. As you do so, your thumb points in the direction of the positive z-axis. Check for yourself with the picture above.

Graphing things in 3 dimensions is obviously harder than graphing things in 2 dimensions. While you don't need to have great artistic skills, you should practice making diagrams in 3 dimensions as they are a huge aid to understanding. Short of taking a drawing class, the best approach might be to copy other peoples' pictures until you get the idea. For starters, you can practice plotting points in \mathbb{R}^{3}.

Example. Plot the points $(2,4,3),(1,-2,-3)$, and $(-2,-4,2)$. The pictures below aren't perfectly scaled; I just want to locate the points in approximately the right places.

The axes and the coordinate planes. Consider the x-axis. It is perpendicular to the y - z plane, and passes through the origin $(y, z)=(0,0)$ of the y-z-plane. Therefore, it is determined by the equations

$$
y=0, \quad z=0
$$

I'll discuss lines later on, and in particular their equations in parametric form. The parametric equations for the x-axis are

$$
x=t, \quad y=0, \quad z=0
$$

Similarly, the y-axis is

$$
x=0, \quad z=0
$$

The z-axis is

$$
x=0, \quad y=0
$$

Now consider the $x-y$ plane. It consists of all the points at " z-level" zero - that is $z=0$.

Likewise, the $y-z$ plane is $x=0$, and the $x-z$ plane is $y=0$.
Distance. The distance between points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\text { distance }=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

(You can write " $\left(x_{2}-x_{1}\right)^{2}$ ", and so on, instead; the squaring makes the order of subtraction irrelevant.) Here's where the formula comes from.

The box has sides of lengths $\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|$, and $\left|z_{1}-z_{2}\right|$. By Pythagoras' Theorem, the diagonal s of the bottom of the box is

$$
s=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

I can drop the absolute values because I'm squaring the terms.
Again by Pythagoras' Theorem, the distance is

$$
\text { distance }=\sqrt{s^{2}+\left(z_{1}-z_{2}\right)^{2}}=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

Example. Find the distance between the points $(4,-1,5)$ and $(2,6,-3)$.

$$
\sqrt{(4-2)^{2}+(-1-6)^{2}+(5-(-3))^{2}}=\sqrt{4+49+64}=\sqrt{117}
$$

