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Green’s Theorem

Let D be a “nice” region in the plane (where “’nice” means the boundary ∂D has a continuous
parametrization and does not intersect itself). The boundary should be traversed in the counterclock-

wise direction. Suppose that ~F = (P (x, y), Q(x, y)) is a vector field, and P and Q have continuous partial
derivatives. Green’s theorem relates the line integral around the boundary ∂D to the double integral over
D:

∫

∂D

P (x, y) dx+Q(x, y) dy =

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dx dy.

D

D6

Green’s theorem is a special case of Stokes’ theorem; to peek ahead a bit,
∂Q

∂x
− ∂P

∂y
is just the z

component of the curl of ~F , where ~F is regarded as a 3-dimensional vector field with zero z component:

curl(P (x, y), Q(x, y), 0) =
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P (x, y) Q(x, y) 0

∣

∣
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∣

∣
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=

(

0, 0,
∂Q

∂x
− ∂P

∂y

)

.

Example. Let D be the unit disk x2 + y2 ≤ 1. Its boundary ∂D is the unit circle x2 + y2 = 1, which has
the parametrization

x = cos t, y = sin t, 0 ≤ t ≤ 2π.
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x   + y   = 122

Verify that Green’s theorem holds for the line integral
∫

∂D

y3 dx− x3 dy.

First, I’ll compute the line integral directly.

dx

dt
= − sin t,

dy

dt
= cos t.
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So

∫

∂D

y3 dx− x3 dy =

∫ 2π

0

(

(sin t)3(− sin t)− (cos t)3(cos t)
)

dt =

∫ 2π

0

(

−(cos t)4 − (sin t)4
)

dt.

Apply the double angle formulas:

−(cos t)4 − (sin t)4 = −1

4

(

(1 + cos 2t)2 + (1− cos 2t)2
)

= −1

4

(

2 + 2(cos 2t)2
)

= −1

2

(

1 +
1

2
(1 + cos 4t)

)

.

So I have
∫ 2π

0

−1

2

(

1 +
1

2
(1 + cos 4t)

)

dt = −3π

2
.

On the other hand, Green’s theorem says the line integral is equal to

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dx dy =

∫∫

x2+y2≤1

(

−3x2 − 3y2
)

dx dy.

Convert to polar. The region is
{

0 ≤ r ≤ 1

0 ≤ θ ≤ 2π

}

So the integral becomes
∫ 1

0

∫ 2π

0

−3r2 · r dθ dr = −3π

2
.

The results agree.

Example. Verify Green’s theorem for ~F = (x− y, x+ y) and the curve ~σ(t) = (cos t, sin t), 0 ≤ t ≤ 2π.

The curve is the unit circle again, and the region D it encloses is the disk x2 + y2 ≤ 1.

dx

dt
= − sin t,

dy

dt
= cos t.

So the line integral is

∫

~σ

(x− y) dx+ (x+ y) dy =

∫ 2π

0

((cos t− sin t)(− sin t) + (cos t+ sin t)(cos t)) dt =

∫ 2π

0

dt = 2π.

Green’s theorem says that the line integral is equal to the double integral

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dx dy =

∫∫

x2+y2≤1

(1− (−1)) dx dy = 2 · (the area of the circle) = 2π.

The results agree.

Example. Let R be the region bounded below by the x-axis, bounded on the right by x = 1 − y for
0 ≤ y ≤ 1, and bounded on the left by x = y − 1 for 0 ≤ y ≤ 1. Compute

∫

∂R

(x2 + y2) dx+ (y2 + 8xy) dy.
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The region is
{

0 ≤ y ≤ 1
y − 1 ≤ x ≤ 1− y

}

∂Q

∂x
− ∂P

∂y
= 8y − 2y = 6y.

By Green’s theorem,

∫

∂R

(x2 + y2) dx+ (y2 + 8xy) dy =

∫ 1

0

∫ 1−y

y−1

6y dx dy =

∫ 1

0

6y [x]
1−y
y−1

dy =

∫ 1

0

6y(2− 2y) dy =

∫ 1

0

(12y − 12y2) dy =
[

6y2 − 4y3
]1

0
= 2.

Example. Let D be the region bounded by y = sinx, from x = 0 to x = π, and the x-axis. Compute

∫

∂D

(x+ y)2 dx− (x− y)2 dy,

Assume that the boundary is traversed counterclockwise.

D

D6

The region is

0 ≤ x ≤ π, 0 ≤ y ≤ sinx.

By Green’s theorem,

∫

∂D

(x+ y)2 dx− (x− y)2 dy =

∫ π

0

∫ sin x

0

(−2(x− y)− 2(x+ y)) dy dx =

∫ π

0

∫ sin x

0

−4x dy dx =

∫ π

0

−4x sinx dx = −4π.

3



If you compute the line integral directly, you need to parametrize the segment which makes up the base
of the region and the curve. However, the curve is y = sinx as x goes from π to 0, because the boundary of
the region is traversed counterclockwise.

Example. Let P be the parallelogram with vertices A(2, 1), B(4, 2), C(3, 4), and D(5, 5). Compute

∫

∂P

(−2y + 3x2y + xy2) dx+ (x2y + x3 + 3x) dy,

Assume the boundary is traversed counterclockwise.

A
B

C

D

To do the line integral directly, I’d need to parametrize each side and compute the integral over each
side. Rather than do four integrals, I’ll use Green’s theorem:

∫

∂P

(−2y + 3x2y + xy2) dx+ (x2y + x3 + 3x) dy =

∫∫

P

(

(2xy + 3x2 + 3)− (−2 + 3x2 + 2xy)
)

dx dy =

∫∫

P

5 dx dy = 5 · (the area of P ).

I don’t need to compute the double integral; the area of a parallelogram is the length of the cross product
of the vectors for two adjacent sides.

−−→
AB = (2, 1, 0) and

−→
AC = 〈1, 3, 0), so

−−→
AB ×−→

AC =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

2 1 0
1 3 0

∣

∣

∣

∣

∣

∣

= (0, 0, 5).

Now |−−→AB ×−→
AC| = 5, so the integral is 5 · 5 = 25.

In the last two examples, the double integral reduced to a number times the area of the region. You
can use Green’s theorem to find the area of a region D as follows.

∫

∂D

x dy =

∫∫

D

(1− 0) dx dy = the area of D.

Example. The trisectrix of MacLaurin is given by the parametric equations

x = 1− 4(cos t)2, y = (tan t)
(

1− 4(cos t)2
)

.
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(The trisectrix is the pedal curve of a parabola; the pedal point is the reflection of the focus across the
directrix.)

The entire curve is traced out from −π

2
to

π

2
. The loop is traced out from −π

3
to

π

3
. Find the area of

the region enclosed by the loop.

x
dy

dt
=

(

1− 4(cos t)2
) [

(sec t)2
(

1− 4(cos t)2
)

+ (tan t)(8)(sin t)(cos t)
]

=

(

1− 4(cos t)2
) (

(sec t)2 − 4 + 8(sin t)2
)

= (sec t)2 + 8(cos t)2 − 32(sin t)2(cos t)2.

The area is

∫ π/3

−π/3

[

(sec t)2 + 8(cos t)2 − 32(sin t)2(cos t)2
]

dt = 3
√
3 = 5.19615 . . . .

(You can integrate the second and third terms using the double angle formulas for sine and cosine.)

Example. (a) Parametrize (x+ y)3 = 8xy. (Hint: Let y = xt.)

(b) Find the area enclosed by the loop of the curve.

(a) Following the hint, set y = xt. Then

(x+ xt)3 = 8x2t

x3(1 + t)3 = 8x2t

x =
8t

(1 + t)3

Hence, y = xt =
8t2

(1 + t)3
.
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y = xt is a line through the origin with slope t. Thus, the curve is being parametrized by the slope of
the line joining the origin to a point on the curve.

(b) The loop is traced as t goes from 0 to ∞.

dy

dt
=

8t(2− t)

(1 + t)4
.

Hence,

x
dy

dt
=

8t

(1 + t)3
· 8t(2− t)

(1 + t)4
.

The area is
∫ ∞

0

8t

(1 + t)3
· 8t(2− t)

(1 + t)4
dt.

You can do this integral by letting u = 1 + t, so du = dt. As t goes from 0 to ∞, u goes from 1 to ∞.
The integral becomes

∫ ∞

1

64(u− 1)2(3− u)

u7
du = 64 lim

b→∞

∫ b

1

(u− 1)2(3− u)

u7
du = 64 lim

b→∞

[

1

3u3
− 5

4u4
+

7

5u5
− 1

2u6

]b

1

=

64 lim
b→∞

(

1

3b3
− 5

4b4
+

7

5b5
− 1

2b6
+

1

60

)

=
16

15
.

Here’s how to do the antiderivative:

∫

(u− 1)2(3− u)

u7
du =

∫

3− 7u+ 5u2 − u3

u7
du =

∫
(

3

u7
− 7

u6
+

5

u5
− 1

u4

)

du =
1

3u3
− 5

4u4
+

7

5u5
− 1

2u6
+ c.

(Multiply out the u stuff on top, then divide each term by u7.)
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