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Interchanging the Order of Integration

Consider the iterated integral
∫∫

D

f(x, y) dx dy.

It can be computed by integrating with respect to x first or with respect to y first. In some cases,
one order is better than the other. For this reason, it’s useful to know how to go from a “bad” order of
integration to a “good” order of integration.

Example. Compute

∫

1

0

∫

1

√
y

1√
x3 + 1

dx dy.

As the integral is given, I’d need to integrate first with respect to x. However, I don’t know the

antiderivative of
1√

x3 + 1
. I’ll interchange the order of integration and integrate first with respect to y.

Step 1: Pull off the limits of integration as inequalities.

{

0 ≤ y ≤ 1√
y ≤ x ≤ 1

}

Step 2: Draw the region defined by the inequalities.

y

y = x

x

1

2

Step 3: Describe the region by inequalities with the variables in the opposite order.

In the first set of inequalities, y came first. In this set, x will come first. For x, I can take the numerical
bounds in the x-direction: 0 ≤ x ≤ 1.

Next, I need the inequalities for y. y is the vertical variable, so it will be bounded by expressions for
the bottom curve and the top curve of the region. The bottom curve is the x-axis, which is y = 0. The top
curve is x =

√
y. Since I’m bounding y, I need to express y in terms of x. Thus, y = x2.

Therefore, the inequalities for y are 0 ≤ y ≤ x2. The new set of inequalities is

{

0 ≤ x ≤ 1
0 ≤ y ≤ x2

}

Step 4: Put the inequalities back onto the integral:

∫

1

0

∫ x2

0

1√
x3 + 1

dy dx =

∫

1

0

1√
x3 + 1

∫ x2

0

dy dx =

∫

1

0

1√
x3 + 1

[y]
x2

0
dx =

1



∫

1

0

x2

√
x3 + 1

dx =

[

2

3

√

x3 + 1

]1

0

=
2

3
(
√
2− 1) = 0.27614 . . . .

Schematically, here’s what’s going on:

integral → inequalities → picture → inequalities → integral

This is similar to the procedure for converting a double integral to polar coordinates.

Example. Compute the integral by interchanging the order of integration:

∫ e

1

∫

1

ln y

cos(ex − x) dx dy.

Pull off the limits as inequalities:
{

1 ≤ y ≤ e

ln y ≤ x ≤ 1

}

Next, draw the region determined by the inequalities. The inequalities 1 ≤ y ≤ e imply that the region
lies in the horizontal strip between y = 1 (bottom) and y = e (top).

y

x

1

1

x
y = e

The inequalities ln y ≤ x ≤ 1 give the left-hand and right-hand boundaries, because x is the horizontal
variable. The left-hand curve is x = ln y, or y = ex. The right-hand curve is x = 1. The region is shown
above.

Next, describe the region by inequalities with the variables switched. I’ll do x first, since the first set of
inequalities had the number bounds on y. The numerical bounds on x are 0 and 1, so 0 ≤ x ≤ 1.

To get the bounds on y, I look at the bottom curve and the top curve. The bottom curve is the line
y = 1. The top curve is y = ex. Hence, the inequalities for y are 1 ≤ y ≤ ex.

The new inequalities are
{

0 ≤ x ≤ 1
1 ≤ y ≤ ex

}

Put the inequalities back onto the integral:

∫

1

0

∫ ex

1

cos(ex − x) dy dx =

∫

1

0

cos(ex − x)

∫ ex

1

dy dx =

∫

1

0

cos(ex − x) [y]
ex

1
dx =

∫

1

0

(ex − 1) cos(ex − x) dx =

∫ e−1

1

(ex − 1) cosu · du

ex − 1
=

∫ e−1

1

cosu du = [sinu]
e−1

1
=

2



[

u = ex − x, du = (ex − 1) dx, dx =
du

ex − 1
;x = 0, u = 1; x = 1, u = e− 1

]

sin(e− 1)− sin 1 = 0.14767 . . . .

Example. Express the following sum as a single iterated integral by interchanging the order of integration:
∫

1

0

∫ y

0

f(x, y) dx dy +

∫

2

1

∫

2−y

0

f(x, y) dx dy

Pull off the limits as inequalities:
{

0 ≤ y ≤ 1
0 ≤ x ≤ y

}

and

{

1 ≤ y ≤ 2
0 ≤ x ≤ 2− y

}

Draw the region determined by the inequalities.
y

x
1

2

1

x + y = 2

y = x

Describe the region by inequalities with the variables switched:
{

0 ≤ x ≤ 1
x ≤ y ≤ 2− x

}

Put the new inequalities back onto the integral:
∫

1

0

∫

2−x

x

f(x, y) dy dx.

Example. Compute

∫

1

0

∫

1

y

2 cos(x2) dx dy.

Pull off the limits as inequalities:
{

0 ≤ y ≤ 1
y ≤ x ≤ 1

}

Draw the region determined by the inequalities.
y

y = x

x

1

3



Describe the region by inequalities with the variables switched:

{

0 ≤ x ≤ 1
0 ≤ y ≤ x

}

Put the new inequalities back onto the integral:

∫

1

0

∫

1

y

2 cos(x2) dx dy =

∫

1

0

∫ x

0

2 cos(x2) dydx =

∫

1

0

2x cos(x2) dx =

[

u = x2, du = 2x dx, dx =
du

2x
; x = 0, u = 0; x = 1, u = 1

]

∫

1

0

2x cosu · du
2x

=

∫

1

0

cosu du = [sinu]
1

0
= sin 1 = 0.84147 . . . .
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