Interchanging the Order of Integration

Consider the iterated integral

$$
\iint_{D} f(x, y) d x d y
$$

It can be computed by integrating with respect to x first or with respect to y first. In some cases, one order is better than the other. For this reason, it's useful to know how to go from a "bad" order of integration to a "good" order of integration.

Example. Compute $\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{1}{\sqrt{x^{3}+1}} d x d y$.
As the integral is given, I'd need to integrate first with respect to x. However, I don't know the antiderivative of $\frac{1}{\sqrt{x^{3}+1}}$. I'll interchange the order of integration and integrate first with respect to y.
Step 1: Pull off the limits of integration as inequalities.

$$
\left\{\begin{array}{c}
0 \leq y \leq 1 \\
\sqrt{y} \leq x \leq 1
\end{array}\right\}
$$

Step 2: Draw the region defined by the inequalities.

Step 3: Describe the region by inequalities with the variables in the opposite order.
In the first set of inequalities, y came first. In this set, x will come first. For x, I can take the numerical bounds in the x-direction: $0 \leq x \leq 1$.

Next, I need the inequalities for $y . y$ is the vertical variable, so it will be bounded by expressions for the bottom curve and the top curve of the region. The bottom curve is the x-axis, which is $y=0$. The top curve is $x=\sqrt{y}$. Since I'm bounding y, I need to express y in terms of x. Thus, $y=x^{2}$.

Therefore, the inequalities for y are $0 \leq y \leq x^{2}$. The new set of inequalities is

$$
\left\{\begin{array}{c}
0 \leq x \leq 1 \\
0 \leq y \leq x^{2}
\end{array}\right\}
$$

Step 4: Put the inequalities back onto the integral:

$$
\int_{0}^{1} \int_{0}^{x^{2}} \frac{1}{\sqrt{x^{3}+1}} d y d x=\int_{0}^{1} \frac{1}{\sqrt{x^{3}+1}} \int_{0}^{x^{2}} d y d x=\int_{0}^{1} \frac{1}{\sqrt{x^{3}+1}}[y]_{0}^{x^{2}} d x=
$$

$$
\int_{0}^{1} \frac{x^{2}}{\sqrt{x^{3}+1}} d x=\left[\frac{2}{3} \sqrt{x^{3}+1}\right]_{0}^{1}=\frac{2}{3}(\sqrt{2}-1)=0.27614 \ldots
$$

Schematically, here's what's going on:

$$
\text { integral } \rightarrow \text { inequalities } \rightarrow \text { picture } \rightarrow \text { inequalities } \rightarrow \text { integral }
$$

This is similar to the procedure for converting a double integral to polar coordinates.

Example. Compute the integral by interchanging the order of integration:

$$
\int_{1}^{e} \int_{\ln y}^{1} \cos \left(e^{x}-x\right) d x d y
$$

Pull off the limits as inequalities:

$$
\left\{\begin{array}{c}
1 \leq y \leq e \\
\ln y \leq x \leq 1
\end{array}\right\}
$$

Next, draw the region determined by the inequalities. The inequalities $1 \leq y \leq e$ imply that the region lies in the horizontal strip between $y=1$ (bottom) and $y=e$ (top).

The inequalities $\ln y \leq x \leq 1$ give the left-hand and right-hand boundaries, because x is the horizontal variable. The left-hand curve is $x=\ln y$, or $y=e^{x}$. The right-hand curve is $x=1$. The region is shown above.

Next, describe the region by inequalities with the variables switched. I'll do x first, since the first set of inequalities had the number bounds on y. The numerical bounds on x are 0 and 1 , so $0 \leq x \leq 1$.

To get the bounds on y, I look at the bottom curve and the top curve. The bottom curve is the line $y=1$. The top curve is $y=e^{x}$. Hence, the inequalities for y are $1 \leq y \leq e^{x}$.

The new inequalities are

$$
\left\{\begin{array}{c}
0 \leq x \leq 1 \\
1 \leq y \leq e^{x}
\end{array}\right\}
$$

Put the inequalities back onto the integral:

$$
\begin{gathered}
\int_{0}^{1} \int_{1}^{e^{x}} \cos \left(e^{x}-x\right) d y d x=\int_{0}^{1} \cos \left(e^{x}-x\right) \int_{1}^{e^{x}} d y d x=\int_{0}^{1} \cos \left(e^{x}-x\right)[y]_{1}^{e^{x}} d x= \\
\int_{0}^{1}\left(e^{x}-1\right) \cos \left(e^{x}-x\right) d x=\int_{1}^{e-1}\left(e^{x}-1\right) \cos u \cdot \frac{d u}{e^{x}-1}=\int_{1}^{e-1} \cos u d u=[\sin u]_{1}^{e-1}=
\end{gathered}
$$

$$
\begin{gathered}
{\left[u=e^{x}-x, \quad d u=\left(e^{x}-1\right) d x, \quad d x=\frac{d u}{e^{x}-1} ; x=0, \quad u=1 ; \quad x=1, \quad u=e-1\right]} \\
\sin (e-1)-\sin 1=0.14767 \ldots
\end{gathered}
$$

Example. Express the following sum as a single iterated integral by interchanging the order of integration:

$$
\int_{0}^{1} \int_{0}^{y} f(x, y) d x d y+\int_{1}^{2} \int_{0}^{2-y} f(x, y) d x d y
$$

Pull off the limits as inequalities:

$$
\left\{\begin{array}{l}
0 \leq y \leq 1 \\
0 \leq x \leq y
\end{array}\right\} \quad \text { and } \quad\left\{\begin{array}{c}
1 \leq y \leq 2 \\
0 \leq x \leq 2-y
\end{array}\right\}
$$

Draw the region determined by the inequalities.

Describe the region by inequalities with the variables switched:

$$
\left\{\begin{array}{c}
0 \leq x \leq 1 \\
x \leq y \leq 2-x
\end{array}\right\}
$$

Put the new inequalities back onto the integral:

$$
\int_{0}^{1} \int_{x}^{2-x} f(x, y) d y d x
$$

Example. Compute $\int_{0}^{1} \int_{y}^{1} 2 \cos \left(x^{2}\right) d x d y$.
Pull off the limits as inequalities:

$$
\left\{\begin{array}{l}
0 \leq y \leq 1 \\
y \leq x \leq 1
\end{array}\right\}
$$

Draw the region determined by the inequalities.

Describe the region by inequalities with the variables switched:

$$
\left\{\begin{array}{l}
0 \leq x \leq 1 \\
0 \leq y \leq x
\end{array}\right\}
$$

Put the new inequalities back onto the integral:

$$
\begin{gathered}
\int_{0}^{1} \int_{y}^{1} 2 \cos \left(x^{2}\right) d x d y=\int_{0}^{1} \int_{0}^{x} 2 \cos \left(x^{2}\right) d y d x=\int_{0}^{1} 2 x \cos \left(x^{2}\right) d x= \\
{\left[u=x^{2}, \quad d u=2 x d x, \quad d x=\frac{d u}{2 x} ; \quad x=0, \quad u=0 ; \quad x=1, \quad u=1\right]} \\
\int_{0}^{1} 2 x \cos u \cdot \frac{d u}{2 x}=\int_{0}^{1} \cos u d u=[\sin u]_{0}^{1}=\sin 1=0.84147 \ldots
\end{gathered}
$$

