Limits and Continuity

I'll give the precise definition of a limit so that you can see the similarity to the definition you saw in single-variable calculus. The first definition is a technical point which you don't need to worry about too much. It simply ensures if we take a limit as $x \rightarrow c$, that x can approach c through a set where the function is defined.

Definition. Let U be a subset of \mathbb{R}^{n}. A point $c \in \mathbb{R}^{n}$ is an accumulation point of U if for every $r>0$, the open ball $B(c ; r)$ contains a point $y \in U$ other than c.
$B(c ; r)$ is the set of points in \mathbb{R}^{n} which are less than r units from c :

$$
B(c ; r)=\left\{x \in \mathbb{R}^{n} \mid r>\|x-c\|\right\}
$$

Definition. Let $f: U \rightarrow \mathbb{R}^{m}$ be a function defined on $U \subset \mathbb{R}^{n}$, and let c be an accumulation point of U. Then $\lim _{x \rightarrow c} f(x)=L$ means:

For every $\epsilon>0$, there is a δ, such that

$$
\text { if } \quad \delta>\|x-c\|>0, \quad \text { then } \quad \epsilon>\|f(x)-L\| .
$$

Many results you know about limits from single-variable calculus have analogs for functions of several variables.

Proposition. Suppose $f, g: U \rightarrow \mathbb{R}$ where $U \subset \mathbb{R}^{n}$. Let c be an accumulation point of U, and let $k \in \mathbb{R}$. Then:
(a) $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$.
(b) $\lim _{x \rightarrow c} k \cdot f(x)=k \cdot \lim _{x \rightarrow c} f(x)$.
(c) $\lim _{x \rightarrow c} f(x) \cdot g(x)=\left[\lim _{x \rightarrow c} f(x)\right]\left[\lim _{x \rightarrow c} g(x)\right]$.
(d) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$, provided that $\lim _{x \rightarrow c} g(x) \neq 0$.

All of these results mean that if the limits on the right side are defined, then so is the limit on the left side, and the two sides are equal.

I won't try to state all of the easy results on limits that generalize to functions of several variables. You will see many of them proven in a course in real analysis. Let's look at some of the complications that result from being able to approach a point in more than one dimension.
Example. Compute $\lim _{(x, y) \rightarrow(-1,2)} \frac{5 x+y+1}{2 x-y}$.

I can compute the limit by plugging in. (This is another way of saying that $f(x, y)=\frac{5 x+y+1}{2 x-y}$ is continuous at $(3,1)$.) Thus.

$$
\lim _{(x, y) \rightarrow(3,1)} \frac{5 x+y+1}{2 x-y}=\frac{5 \cdot 3+1+1}{2 \cdot 3-1}=\frac{17}{5} .
$$

Example. Compute $\lim _{(x, y, z) \rightarrow(4,1,2)}(x+3 y) e^{-z}$.
I can compute the limit by plugging in.

$$
\lim _{(x, y, z) \rightarrow(4,1,2)}(x+3 y) e^{-z}=(4+3 \cdot 1) e^{-2}=7 e^{-2}
$$

Example. Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{5 x y-2 y^{2}}{x^{2}+y^{2}}$.
Substituting $(x, y)=(0,0)$ yields the indeterminate form $\frac{0}{0}$.
Here's the graph of the function. Notice that as $(x, y) \rightarrow(0,0)$ the height seems to approach one value along the "ridgeline" while it approaches another value along the "valley":

This leads me to believe that the limit is undefined.
To prove this, I try to find different ways of approaching (0,0) which give different limits. Specifically, I try to pick different curves through $(0,0)$ which make $\frac{5 x y-2 y^{2}}{x^{2}+y^{2}}$ simplify to different values. In this case, I try the x-axis, which is $y=0$, and the y-axis, which is $x=0$.

Set $y=0$ and let $x \rightarrow 0$. I have

$$
\lim _{x \rightarrow 0} \frac{5 x \cdot 0-2 \cdot 0^{2}}{x^{2}+0^{2}}=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=\lim _{x \rightarrow 0} 0=0
$$

Set $x=0$ and let $y \rightarrow 0$. I have

$$
\lim _{y \rightarrow 0} \frac{5 \cdot 0 \cdot y-2 y^{2}}{0^{2}+y^{2}}=\lim _{y \rightarrow 0} \frac{-2 y^{2}}{y^{2}}=\lim _{y \rightarrow 0}(-2)=-2 .
$$

Since $\frac{5 x y-2 y^{2}}{x^{2}+y^{2}}$ approaches different numbers depending on how (x, y) approaches $(0,0)$, the limit is undefined.

Example. Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4} y}{x^{8}+y^{2}}$.
Substituting $(x, y)=(0,0)$ yields the indeterminate form $\frac{0}{0}$.
Here's the graph of the function. It is a little harder to tell f.
Here's the graph of the function. It is a little harder to tell from the graph what is happening near the origin.

It turns out that the limit is undefined. To show this, I'll approach $(0,0)$ along a line and along a curve. If you approach $(0,0)$ along the line $y=0$, you get

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4} y}{x^{8}+y^{2}}=\lim _{x \rightarrow 0} \frac{3 \cdot x^{4} \cdot 0}{x^{8}+0^{2}}=\lim _{x \rightarrow 0} \frac{0}{x^{8}}=\lim _{x \rightarrow 0} 0=0
$$

Next, I notice that $x^{4} \cdot x^{4}=x^{8}$ and $\left(x^{4}\right)^{2}=x^{8}$. Thus, I can get multiple " $x^{8 "}$ terms by setting $y=x^{4}$. If you approach $(0,0)$ along the curve $y=x^{4}$, you get

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4} y}{x^{8}+y^{2}}=\lim _{x \rightarrow 0} \frac{3 x^{4} \cdot x^{4}}{x^{8}+\left(x^{4}\right)^{2}}=\lim _{x \rightarrow 0} \frac{3 x^{8}}{2 x^{8}}=\lim _{x \rightarrow 0} \frac{3}{2}=\frac{3}{2}
$$

Since $\frac{3 x^{4} y}{x^{8}+y^{2}}$ approaches different numbers depending on how (x, y) approaches $(0,0)$, the limit is undefined.

Example. Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$ by converting to polar coordinates.
Let $x=r \cos \theta$ and $y=r \sin \theta$. Then

$$
\frac{x^{2} y^{3}}{x^{2}+y^{2}}=\frac{(r \cos \theta)^{2}(r \sin \theta)^{2}}{(r \cos \theta)^{2}+(r \sin \theta)^{2}}=\frac{r^{4}(\cos \theta)^{2}(\sin \theta)^{2}}{r^{2}}=r^{2}(\cos \theta)^{2}(\sin \theta)^{2}
$$

Then

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{3}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} r^{2}(\cos \theta)^{2}(\sin \theta)^{2}=0
$$

Example. Compute $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2}+y^{2}+z^{2}}{5 y^{2}+z^{2}}$.
I try to find different curves through $(0,0)$ which make $\frac{x^{2}+y^{2}+z^{2}}{5 y^{2}+z^{2}}$ simplify to different values.

If you approach $(0,0,0)$ along the line $y=z, x=0$, you get

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2}+y^{2}+z^{2}}{5 y^{2}+z^{2}}=\lim _{z \rightarrow 0} \frac{0^{2}+z^{2}+z^{2}}{5 z^{2}+z^{2}}=\lim _{z \rightarrow 0} \frac{2 z^{2}}{6 z^{2}}=\lim _{z \rightarrow 0} \frac{1}{3}=\frac{1}{3}
$$

If you approach $(0,0,0)$ along the line $x=y=z$, you get

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2}+y^{2}+z^{2}}{5 y^{2}+z^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}+x^{2}+x^{2}}{5 x^{2}+x^{2}}=\lim _{x \rightarrow 0} \frac{3 x^{2}}{6 x^{2}}=\lim _{x \rightarrow 0} \frac{1}{2}=\frac{1}{2}
$$

Since you get different limits by approaching ($0,0,0$) in different ways, $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2}+y^{2}+z^{2}}{5 y^{2}+z^{2}}$ is undefined. \square

Definition. Let $f: U \rightarrow \mathbb{R}^{m}$, where $U \subset \mathbb{R}^{n}$, and let $c \in U$. Then f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Remark. Some authors will say a function $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is not continous at a point where the function isn't defined. For example, the function f defined by $f(x)=\frac{1}{x-1}$ has (natural) domain $x \neq 1$. These authors will say that f is not continuous at $x=1$, with similar terminology for multivariable functions. I'll avoid doing this: It seems inappropriate to talk about whether a function does or does not have a property like continuity at the point where there is no function!

I'll only consider continuity (or lack of continuity) at points in a function's domain.
Example. A function $\mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{x+3 y}{2 x+5 y} & \text { if }(x, y) \neq(2,1) \\
\frac{4}{9} & \text { if }(x, y)=(2,1)
\end{array} .\right.
$$

Is f continuous at $(2,1) ?$

$$
\lim _{(x, y) \rightarrow(2,1)} f(x, y)=\lim _{(x, y) \rightarrow(2,1)} \frac{x+3 y}{2 x+5 y}=\frac{5}{9} .
$$

However, $f(2,1)=\frac{4}{9}$,
Since $\lim _{(x, y) \rightarrow(2,1)} f(x, y) \neq f(2,1)$, it follows that f is not continuous at $(2,1)$.

