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Line Integrals

If ~F is a vector field and ~σ(t), a ≤ t ≤ b, is a path, the line integral of ~F along ~σ(t) is

∫

~σ

~F ·
−→
ds =

∫ b

a

~F (t) · ~σ ′(t) dt.

Here is what this looks like in two dimensions.

The vector field gives a vector at each point of the plane. As you move along the path, at each point you
compute the dot product of the velocity vector ~σ′(t) with the vector from the field at that point. Integrate
to “add up” the results; the total is the line integral.

Notice that I’m writing
−→
ds instead of ds, the differential for a path integral. Here’s the difference:

−→
ds = ~σ ′(t) dt, while ds = ‖~σ ′(t)‖ dt.

One is a vector, the other is a scalar:
−→
ds uses the velocity vector, while ds uses the length of the velocity

vector.

Example. Compute

∫

~σ

~F ·
−→
ds for ~F (x, y) = (y, x):

(a) Along the path ~σ(t) = (cos t, sin t) for 0 ≤ t ≤
π

2
.

(b) Along the path ~τ(t) = (cos 2t, sin 2t) for 0 ≤ t ≤
π

4
.

(a) The path is the part of x2 + y2 = 1 lying in the first quadrant — a quarter circle. ~σ(0) = (1, 0) while

~σ
(π

2

)

= (0, 1), so the quarter circle is traversed counterclockwise.

The velocity is
~σ ′(t) = (− sin t, cos t).

Write the vector field in terms of t:

~F (t) = (y, x) = (sin t, cos t).

Then
~F (t) · ~σ ′(t) = −(sin t)2 + (cos t)2 = cos 2t.

(I used a double angle formula from trigonometry.) Therefore,

∫

~σ

~F ·
−→
ds =

∫ π/2

0

cos 2t dt =

[

1

2
sin 2t

]π/2

0

= 0.
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(b) τ is the same quarter circle as in (a), but

~τ ′(t) = (−2 sin 2t, 2 cos 2t).

The extra factor of 2 means the path is traversed twice as fast as (a). The field is

~F (t) = (y, x) = (sin 2t, cos 2t).

So
~F (t) · ~τ ′(t) = −2(sin 2t)2 + 2(cos 2t)2 = 2 cos 4t.

Therefore,
∫

~τ

~F ·
−→
ds =

∫ π/4

0

2 cos 4t dt =

[

1

2
sin 4t

]π/4

0

= 0.

Traversing the path twice as rapidly made no difference. This is true in general: If you traverse the

same path in the same direction at different speeds, the line integral does not change.

Example. Compute

∫

~σ

~F ·
−→
ds for ~F (x, y) = (x+ y, x− y):

(a) Along the path ~σ(t) = (t, t2) for 0 ≤ t ≤ 1.

(b) Along the path ~τ(t) = (1− t, (1− t)2) for 0 ≤ t ≤ 1.

(a) The path is the part of the parabola y = x2 from (0, 0) to (1, 1). I have

~σ′(t) = (1, 2t) and ~F (x, y) = (x+ y, x− y) = (t+ t2, t− t2).

Hence,
~F (t) · ~σ′(t) = t+ 3t2 − 2t3.

The integral is

∫

~σ

~F ·
−→
ds =

∫

1

0

(t+ 3t2 − 2t3) dt =

[

1

2
t2 + t3 −

1

2
t4
]1

0

= 1.

(b) If I change the path to ~τ(t) = (1 − t, (1 − t)2), I am now traversing y = x2 from (1, 1) to (0, 0) — the
same path as in (a), but in the opposite direction.

I have
~τ ′(t) = (−1,−2 + 2t).

~F (t) = ((1− t) + (1− t)2, (1− t)− (1− t)2) = (t2 − 3t+ 2, t− t2).

Hence,
~F (t) · ~τ ′(t) = −2t3 + 3t2 + t− 2.

Therefore,

∫

~τ

~F ·
−→
ds =

∫

1

0

(−2t3 + 3t2 + t− 2) dt =

[

−
1

2
t4 + t3 +

1

2
t2 − 2t

]1

0

= −1.

This is true in general: If you traverse the same path in the opposite direction, the line integral is

multiplied by −1.
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Differential notation.

If ~F = (F1, F2, F3) is a vector field and ~σ(t) for a ≤ t ≤ b, is a path, then

~F · ~σ′(t) = (F1, F2, F3) ·

(

dx

dt
,
dy

dt
,
dz

dt

)

= F1

dx

dt
+ F2

dy

dt
+ F3

dz

dt
.

So
∫

~σ

~F ·
−→
ds =

∫ b

a

(

F1

dx

dt
+ F2

dy

dt
+ F3

dz

dt

)

dt.

If I formally multiply the dt in, I get

∫

~σ

~F ·
−→
ds =

∫ b

a

(F1 dx+ F2 dy + F3 dz).

You will sometimes see line integrals written in this form.
You can do the computation converting F1, F2, and F3 to functions of t using ~σ = (x(t), y(t), z(t)).

Replace dx, dy, dz by
dx

dt
,
dy

dt
,
dz

dt
, and integrate the whole thing with respect to t.

Alternatively, you can use one of the coordinate variables x, y, or z as the parameter.

Example. Let ~σ(t) be the segment joining (1, 1, 1) to (2, 3, 4). Compute

∫

~σ

x dx+ y dy + (x+ y − 1) dz.

The segment is

~σ(t) = (1− t) · (1, 1, 1) + t · (2, 3, 4) = (1 + t, 1 + 2t, 1 + 3t).

That is,
x = 1 + t, y = 1 + 2t, z = 1 + 3t.

The parameter range is 0 ≤ t ≤ 1.
Now

dx

dt
= 1,

dy

dt
= 2,

dz

dt
= 3.

Plugging everything into the integral, I get

∫

~σ

x dx+ y dy + (x+ y − 1) dz =

∫

1

0

[(1 + t)(1) + (1 + 2t)(2) + (1 + 3t)(3)] dt =

∫

1

0

(6 + 14t) dt =

[

6t+ 7t2
]1

0
= 13.

Example. Compute

∫

C

(x + 8y) dx + 5x2 dy where C is the part of the curve y = x3 going from (0, 0) to

(1, 1).

I’ll do everything in terms of x. I have
dy

dx
= 3x2, so dy becomes 3x2 dx. The curve extends from x = 0

to x = 1. Substituting y = x3 and dy = 3x2 dx, I get

∫

C

(x+ 8y) dx+ 5x2 dy =

∫

1

0

[(x+ 8x3) + 5x2 · 3x2] dx =

∫

1

0

(x+ 8x3 + 15x4) dx =

3



[

1

2
x2 + 2x4 + 3x5

]1

0

=
11

2
.

If ~F represents a force field and ~σ is the tranjectory of an object moving in the field, the work done
by the object in moving along the path through the field is

∫

~σ

~F ·
−→
ds.

Example. Suppose a force field is given by

~F (x, y) = (x+ y, 2y).

Find the work done by a particle moving along a path consisting of the segment from (0, 0) to (1, 0),
followed by the arc of the circle x2 + y2 = 1 from (1, 0) counterclockwise to (0, 1).

y

x

(0,1)

(1,0)(0,0)

The segment from (0, 0) to (1, 0) may be parametrized by

~σ(t) = (t, 0) for 0 ≤ t ≤ 1.

Thus,
x = t, y = 0.

Hence,
~σ ′(t) = (1, 0).

On this segment,
~F (t) = (t, 0).

So
~F · ~σ ′(t) = (t, 0) · (1, 0) = t.

The work done is
∫

~σ

~F ·
−→
ds =

∫

1

0

t dt =

[

1

2
t2
]1

0

=
1

2
.

The arc of the circle from (1, 0) to (0, 1) may be parametrized by

~τ(t) = (cos t, sin t) for 0 ≤ t ≤
π

2
.

Thus,
x = cos t, y = sin t.
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Hence,
~τ ′(t) = (− sin t, cos t).

On this arc,
~F (t) = (cos t+ sin t, 2 sin t).

So

~F · ~τ ′(t) = (cos t+ sin t, 2 sin t) · (− sin t, cos t) = − cos t sin t− (sin t)2 + 2 sin t cos t = sin t cos t− (sin t)2.

The work done is

∫

~τ

~F ·
−→
ds =

∫ π/2

0

(sin t cos t− (sin t)2) dt =

∫ π/2

0

(

1

2
sin 2t−

1

2
(1− cos 2t)

)

dt =

[

−
1

4
cos 2t−

1

2
t+

1

4
sin 2t

]π/2

0

=
1

2
−

π

4
= −0.28539 . . . .
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