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Partial Derivatives

The derivative of a function y = f(x) tells us about the rate of change of f . If z = f(x, y) is a function
with 2 inputs and 1 output, what does “rate of change” mean?

The graph of z = f(x, y) is a surface in 3 dimensions. Imagine standing somewhere on the surface. How
steep is the surface there?

A little thought shows that the question is ambiguous. For example, if you’re standing on the side of
a hill, the slope is steep in the uphill and downhill directions. On the other hand, the slope is gentle if you
walk along the side of the hill at a constant altitude.

You can see that in order to discuss the rate of change of a function of several variables, you need to
specify the direction in which the change occurs. This may seem to be a complicated proposition. At a given
point (x, y), you can move in infinitely many directions.

For simplicity, suppose I’ll consider changes in the x- and y-directions first. If you’re at the point (x, y)
and you move in the x-direction by a small amount h, you wind up at the point (x+ h, y). The change in f

is

∆f = f(x+ h, y)− f(x, y).

The average rate of change is
f(x+ h, y)− f(x, y)

h
.

As usual, you can take the limit as h → 0 to obtain the instantaneous rate of change:

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
.

This is the partial derivative of f with respect to x; notice that the notation
∂f

∂x
is a little different

than the
dy

dx
notation for ordinary derivatives. Likewise, the partial derivative of f with respect to y is

∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h
.

It measures the rate at which f changes as y changes.
Subscripts can also be used to denote partial derivatives. Thus,

fx means
∂f

∂x
and fy means

∂f

∂y
.

To see what partial derivatives mean pictorially, consider the graph of a surface z = f(x, y):
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The partial derivatives of f at a point on the surface are the rates of change of f in the x- and y-

directions. Draw curves through the point in the x- and y-directions. Then
∂f

∂x
and

∂f

∂y
are just the slopes

of these curves at the point.

Notice that in computing these partial derivatives, you change one variable at a time, holding the other
constant. This is the key to computing partial derivatives: You differentiate as usual with respect to one
variable at a time, holding the others constant.

Example. Compute the partial derivatives of z = f(x, y) = xexy.

The partial derivatives are

∂z

∂x
= x · yexy + 1 · exy and

∂f

∂y
= x2exy.

Notice that I used the product rule in computing
∂f

∂x
, because f is a product (x times exy) with respect

to x. But I don’t need the product rule to compute
∂f

∂y
: with respect to y, the first factor x is constant.

Example. Compute the partial derivatives of z = (x+ 2)3(y − 3)4.

∂z

∂x
= 3(x+ 2)2(y − 3)4 and

∂z

∂y
= 4(x+ 2)3(y − 3)3.

Example. Suppose f(x) is a function of x alone and g(y) is a function of y alone. Compute the partial
derivatives of h(x, y) = sin (f(x) + g(y)).

hx = f ′(x) cos (f(x) + g(y)) and hy = g′(y) cos (f(x) + g(y)) .

The same idea applies to computing partial derivatives of functions of more than two variables. For
example, the partial derivatives of w = f(x, y, z) are

∂f

∂x
= fx,

∂f

∂y
= fy, and

∂f

∂z
= fz.
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In each case, you compute the partial derivative with respect to the variable FOO by differentiating
with respect to FOO while holding the other variables constant.

Here’s the general definition for a function f(x1, x2, . . . xn) of n variables. Assume f : U → R, where U

is a subset of Rn. We usually assume U is an open set, but you don’t need to worry about it in this course.

Definition. The partial derivative of f with respect to xk is

∂f

∂xk

= lim
h→0

f(x1, x2, . . . xk + h, . . . xn)− f(x1, x2, . . . xk, . . . xn)

h
.

Since this is just the derivative of the single variable function xk → f(x1, x2, . . . xk, . . . xn), all your
usual derivative formulas from single-variable calculus work. I won’t them all, but here are some examples.

Proposition. Suppose U ⊂ R
n, f, g : U → R are functions of n variables x1, x2, . . . xn, and c is a number.

(a)
∂

∂xk

(x) =
∂

∂xk

f(x) +
∂

∂xk

g(x).

(b)
∂

∂xk

(c · f(x)) = c ·
∂

∂xk

f(x).

(c)
∂

∂xk

(f(x) · g(x)) = f(x) ·
∂

∂xk

g(x) + g(x) ·
∂

∂xk

f(x).

(d)
∂

∂xk

f(x)

g(x)
=

g(x)
∂

∂xk

f(x)− f(x)
∂

∂xk

g(x)

g(x)2
, provided that g(x) 6= 0.

I’ve written x = (x1, x2, . . . xn) for short.

Example. Compute the partial derivatives of w =
x2 + 3y2

z
.

∂w

∂x
=

2x

z
,

∂w

∂y
=

6y

z
,

∂w

∂z
= −

x2 + 3y2

z2
.

Example. Compute the partial derivatives of f(x, y, z) = 2xy + 3yz − 5xz.

fx = 2y − 5z, fy = 2x+ 3z, fz = 3y − 5x.

There are also have higher order derivatives, and here some complications can arise. Suppose z = f(x, y).

The second derivatives should be the derivatives of the first derivatives. There are two first derivatives,
∂f

∂x

and
∂f

∂y
, and each of these may be differentiated with respect to x and to y. So there seem to be 4 second-order

partials,
∂

∂x

(

∂f

∂x

)

=
∂2f

∂x2
= fxx,

∂

∂x

(

∂f

∂y

)

=
∂2f

∂x∂y
= fyx,
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∂

∂y

(

∂f

∂x

)

=
∂2f

∂y∂x
= fxy,

∂

∂y

(

∂f

∂y

)

=
∂2f

∂y2
= fyy.

(Notice that the subscript notation has the bottom variables in the opposite order from the fractional
notation. The rationale is that in the subscript notation, variables “pile up” on the right side as you take
more derivatives.)

Example. Compute the second partial derivatives of z = x2 − 3xy + y4.

zx = 2x− 3y, zy = −3x+ 4y3,

zxx = 2, zxy = −3, zyx = −3, zyy = 12y2.

Notice that the two mixed partials zxy and zyx are equal. In fact, this fact (which is called equality

of mixed partials is true for most “nice” functions. The technical definition of “niceness” is that the
function f(x, y) have continuous second-order partial derivatives. Here’s the result stated in all its technical
glory.

Theorem. Suppose U is an open subset of Rn and f : U → R is a function of n variables. If the second-order
partial derivatives of f are continuous, then for 1 ≤ i < j ≤ n,

∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

.

With appropriate assumptions, higher-order mixed partials involving the same variables to the same
orders are also equal. For example, for a function of 3 variables satisfying the right assumptions,

∂3f

∂x∂z∂x
=

∂3f

∂z∂x∂z
.

Example. Compute the second partial derivatives of w = 2xy +
3y

z
.

There are 3 first-order partials, each of which has 3 partial derivatives, so there are 9 second-order
partials. But equality of mixed partials implies that some of these will be the same; for example, wxz = wzx.
There are actually only 6 distinct second-order partials.

wx = 2y, wy = 2x+
3

z
, wz = −

3y

z2
,

wxx = 0, wxy = wyx = 2, wxz = wzx = 0,

wyy = 0, wyz = wzy = −
3

z2
, wzz =

6y

z3
.

c©2018 by Bruce Ikenaga 4


