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Path Integrals

A path integral in R
2 is the integral of a scalar function f(x, y) along a path ~σ in the x-y-plane.

Represent the curve in parametrized form: σ(t) = (x(t), y(t)), or x = x(t), y = y(t) for a ≤ t ≤ b. Then

∫

~σ

f ds =

∫ b

a

f(~σ(t))‖~σ ′(t)‖ dt.

Path integrals in higher dimensions are defined in similar fashion.
Heuristically, the curve is divided into little pieces. A small piece of the curve has length ds, where

ds =
√

dx2 + dy2 =

√

(

dx

dt

)2

+

(

dy

dt

)2

dt.

Above the small piece of the curve, I build a rectangle using f to obtain the height (for example, by
plugging a point on the small piece of the curve into f). A careful definition would use Riemann sums, as
usual.

It is like building a rectangle sum along a curve, rather than the x-axis as you do with ordinary single-
variable integrals.

Example. Compute
∫

C
(3x+ 2y) ds, where C is the segment from (1, 3) to (2,−1).

The segment from (1, 3) to (2,−1) is

(x, y) = (1− t) · (1, 3) + t · (2,−1) = (1 + t, 3− 4t).

Thus,
x = 1 + t, y = 3− 4t.

Hence,
ds =

√

x′(t)2 + y′(t)2 dt =
√
1 + 16 dt =

√
17 dt.

In addition,
3x+ 2y = 3(1 + t) + 2(3− 4t) = 9− 5t.

Hence,

∫

C

(3x+ 2y) ds =

∫

1

0

(9− 5t)
√
17 dt =

√
17

[

9t− 5

2
t2
]1

0

=
13
√
17

2
= 26.80018 . . . .

Example. Compute

∫

~σ

f ds, where f(x, y) = x2 − y2 and ~σ(t) = (cos t, sin t), 0 ≤ t ≤ π

4
.
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First, I’ll find ds:

~σ ′(t) = (− sin t, cos t), so |~σ ′(t)| =
√

(sin t)2 + (cos t)2 = 1.

Therefore, ds = 1 · dt = dt.
Next, I convert f to a function of t:

f(t) = (cos t)2 − (sin t)2 = cos 2t.

Therefore,
∫

~σ

f ds =

∫ π/4

0

cos 2t dt =

[

1

2
sin 2t

]π/4

0

=
1

2
.

Path integrals work in similar fashion in R
3.

Example. Compute

∫

C

(x2 + y + 2z) ds, where C is the segment from (1, 2, 1) to (2, 0, 1).

The segment from (1, 2, 1) to (2, 0, 1) is

(x, y, z) = (1− t) · (1, 2, 1) + t · (2, 0, 1) = (1 + t, 2− 2t, 1).

Hence,
ds =

√

x′(t)2 + y′(t)2 + z′(t)2 dt =
√
1 + 4 + 0 dt =

√
5 dt.

In addition,
x2 + y + 2z = (1 + t)2 + (2− 2t) + 2 = t2 + 5.

Therefore,

∫

C

(x2 + y + 2z) ds =

∫

1

0

(t2 + 5) ·
√
5 dt =

√
5

[

1

3
t3 + 5t

]1

0

=
16
√
5

3
= 11.92569 . . . .

Example. A wire is bent into the shape of the helix

~σ(t) = (cos t, sin t, t), 0 ≤ t ≤ 4π.

The density is proportional to the square of the distance from the origin. Find the mass of the wire.

In this case, the curve is 3-dimensional, so I can’t picture it as a “fence” as I did with the 2-dimensional
curves. However, the computation is essentially the same.

The density is δ = k(x2 + y2 + z2), where k is a constant. The mass is just

∫

~σ

δ ds.

The velocity is

~σ ′(t) = (− sin t, cos t, 1), so |~σ ′(t)| =
√

(sin t)2 + (cos t)2 + 1 =
√
2.

Hence, ds =
√
2 dt.

Write δ in terms of t:
δ = k

[

(cos t)2 + (sin t)2 + 1
]

= k(1 + t2).

The mass is
∫

4π

0

k(1 + t2) ·
√
2 dt = k

√
2

[

t+
1

3
t3
]4π

0

= k
√
2

(

4π +
64

3
π3

)

.
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