Path Integrals

A path integral in \mathbb{R}^{2} is the integral of a scalar function $f(x, y)$ along a path $\vec{\sigma}$ in the x - y-plane.
Represent the curve in parametrized form: $\sigma(t)=(x(t), y(t))$, or $x=x(t), y=y(t)$ for $a \leq t \leq b$. Then

$$
\int_{\vec{\sigma}} f d s=\int_{a}^{b} f(\vec{\sigma}(t))\left\|\vec{\sigma}^{\prime}(t)\right\| d t
$$

Path integrals in higher dimensions are defined in similar fashion.
Heuristically, the curve is divided into little pieces. A small piece of the curve has length $d s$, where

$$
d s=\sqrt{d x^{2}+d y^{2}}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Above the small piece of the curve, I build a rectangle using f to obtain the height (for example, by plugging a point on the small piece of the curve into f). A careful definition would use Riemann sums, as usual.

It is like building a rectangle sum along a curve, rather than the x-axis as you do with ordinary singlevariable integrals.

Example. Compute $\int_{C}(3 x+2 y) d s$, where C is the segment from $(1,3)$ to $(2,-1)$.
The segment from $(1,3)$ to $(2,-1)$ is

$$
(x, y)=(1-t) \cdot(1,3)+t \cdot(2,-1)=(1+t, 3-4 t)
$$

Thus,

$$
x=1+t, \quad y=3-4 t
$$

Hence,

$$
d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=\sqrt{1+16} d t=\sqrt{17} d t
$$

In addition,

$$
3 x+2 y=3(1+t)+2(3-4 t)=9-5 t .
$$

Hence,

$$
\int_{C}(3 x+2 y) d s=\int_{0}^{1}(9-5 t) \sqrt{17} d t=\sqrt{17}\left[9 t-\frac{5}{2} t^{2}\right]_{0}^{1}=\frac{13 \sqrt{17}}{2}=26.80018 \ldots
$$

Example. Compute $\int_{\vec{\sigma}} f d s$, where $f(x, y)=x^{2}-y^{2}$ and $\vec{\sigma}(t)=(\cos t, \sin t), 0 \leq t \leq \frac{\pi}{4}$.

First, I'll find $d s$:

$$
\vec{\sigma}^{\prime}(t)=(-\sin t, \cos t), \quad \text { so } \quad\left|\vec{\sigma}^{\prime}(t)\right|=\sqrt{(\sin t)^{2}+(\cos t)^{2}}=1
$$

Therefore, $d s=1 \cdot d t=d t$.
Next, I convert f to a function of t :

$$
f(t)=(\cos t)^{2}-(\sin t)^{2}=\cos 2 t
$$

Therefore,

$$
\int_{\vec{\sigma}} f d s=\int_{0}^{\pi / 4} \cos 2 t d t=\left[\frac{1}{2} \sin 2 t\right]_{0}^{\pi / 4}=\frac{1}{2}
$$

Path integrals work in similar fashion in \mathbb{R}^{3}.
Example. Compute $\int_{C}\left(x^{2}+y+2 z\right) d s$, where C is the segment from $(1,2,1)$ to $(2,0,1)$.
The segment from $(1,2,1)$ to $(2,0,1)$ is

$$
(x, y, z)=(1-t) \cdot(1,2,1)+t \cdot(2,0,1)=(1+t, 2-2 t, 1)
$$

Hence,

$$
d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t=\sqrt{1+4+0} d t=\sqrt{5} d t
$$

In addition,

$$
x^{2}+y+2 z=(1+t)^{2}+(2-2 t)+2=t^{2}+5
$$

Therefore,

$$
\int_{C}\left(x^{2}+y+2 z\right) d s=\int_{0}^{1}\left(t^{2}+5\right) \cdot \sqrt{5} d t=\sqrt{5}\left[\frac{1}{3} t^{3}+5 t\right]_{0}^{1}=\frac{16 \sqrt{5}}{3}=11.92569 \ldots
$$

Example. A wire is bent into the shape of the helix

$$
\vec{\sigma}(t)=(\cos t, \sin t, t), \quad 0 \leq t \leq 4 \pi
$$

The density is proportional to the square of the distance from the origin. Find the mass of the wire.
In this case, the curve is 3-dimensional, so I can't picture it as a "fence" as I did with the 2-dimensional curves. However, the computation is essentially the same.

The density is $\delta=k\left(x^{2}+y^{2}+z^{2}\right)$, where k is a constant. The mass is just $\int_{\vec{\sigma}} \delta d s$.
The velocity is

$$
\vec{\sigma}^{\prime}(t)=(-\sin t, \cos t, 1), \quad \text { so } \quad\left|\vec{\sigma}^{\prime}(t)\right|=\sqrt{(\sin t)^{2}+(\cos t)^{2}+1}=\sqrt{2}
$$

Hence, $d s=\sqrt{2} d t$.
Write δ in terms of t :

$$
\delta=k\left[(\cos t)^{2}+(\sin t)^{2}+1\right]=k\left(1+t^{2}\right)
$$

The mass is

$$
\int_{0}^{4 \pi} k\left(1+t^{2}\right) \cdot \sqrt{2} d t=k \sqrt{2}\left[t+\frac{1}{3} t^{3}\right]_{0}^{4 \pi}=k \sqrt{2}\left(4 \pi+\frac{64}{3} \pi^{3}\right)
$$

