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Spherical Coordinates

Spherical coordinates represent points in R
3 using three numbers: (ρ, θ, φ).

z

x

y

ρ is the distance from (0, 0, 0) to the point.

θ is “the polar coordinate θ” — that is, project the ray from the origin to the point down to a ray ~r in
the x-y plane. Measure the angle θ from the positive x-axis to ~r in the usual way.

φ is the angle from the positive z-axis to the ray from the origin to the point.

The conversion equations are

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

Note also that
ρ2 = x2 + y2 + z2.

However, if you’re converting the coordinates of a single point from one coordinate system to another,
the best thing is to draw a picture and use trigonometry.

Example. A point has rectangular coordinates (−2, 2, 2
√
6). Find its spherical coordinates.

First, θ =
3π

4
. Since r = 2

√
2 and z = 2

√
6, ρ = 4

√
2 by Pythagoras.

tanφ =
r

z
=

2
√
2

2
√
6
=

1√
3
.
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So φ =
π

6
.

The spherical coordinates are

(

4
√
2,

3π

4
,
π

6

)

.

Note: If a point lies below the x-y-plane, φ will be greater than
π

2
. In that case, you can’t use sin−1 or

tan−1 “as is” to give φ, since those inverse trig functions only produce angles less than or equal to
π

2
.

Example. A point has cylindrical coordinates

(

4,
5π

3
,−4

)

. Find its spherical coordinates.

θ =
5π

3
. Since r = 4 and z = −4, ρ = 4

√
2 by Pythagoras. Finally, the radius lies

π

4
below the

x-y-plane, so φ =
3π

4
.

The spherical coordinates are

(

4
√
2,

5π

3
,
3π

4

)

.

Example. Let r be the polar coordinate radius. Express r in terms of spherical coordinates.

x2 = ρ2(sinφ)2(cos θ)2

y2 = ρ2(sinφ)2(sin θ)2

x2 + y2 = ρ2(sinφ)2

r2 = ρ2(sinφ)2

r = ρ sinφ

I can take 0 ≤ φ ≤ π (so sinφ ≥ 0) and ρ ≥ 0, so I can avoid taking absolute values in the last square
root step.

Example. Sketch the region in space described by the following spherical coordinate inequalities:

{

0 ≤ ρ ≤ 1

0 ≤ φ ≤ π

4

}
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The region lies inside the sphere of radius 1 but above the cone φ =
π

4
. Note that the latter is

φ =
π

4

tanφ = tan
π

4
= 1

z

r
= 1

z = r

z =
√

x2 + y2

The spherical conversion equations are

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

They define a function f : R3 → R
3

f(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

The Jacobian of f is

∣

∣

∣

∣

∣

∣

sinφ cos θ −ρ sinφ sin θ ρ cosφ cos θ
sinφ sin θ ρ sinφ cos θ ρ cosφ sin θ
cosφ 0 −ρ sinφ

∣

∣

∣

∣

∣

∣

= −ρ2 sinφ.

The absolute value is ρ2 sinφ. Hence, when you go from rectangular coordinates to spherical coordinates,
the differentials convert by

dx dy dz → ρ2 sinφdρ dφ dθ

Therefore, in order to convert a triple integral from rectangular coordinates to spherical coordinates,
you should do the following:

1. Convert the limits of integration by describing the region of integration by inequalities in spherical
coordinates.

2. Convert the integrand using the spherical conversion formulas:

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

ρ2 = x2 + y2 + z2,

√

x2 + y2

z
= tanφ.
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3. Convert the differentials by
dx dy dz → ρ2 sinφdρ dφ dθ

Example. Let R be the interior of the sphere x2 + y2 + z2 = 4. Compute

∫∫∫

R

√

x2 + y2
√

x2 + y2 + z2
dx dy dz.
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R is a sphere of radius 2 centered at the origin. The interior of the sphere is described by the inequalities






0 ≤ θ ≤ 2π
0 ≤ φ ≤ π

0 ≤ ρ ≤ 2







Moreover, since r = ρ sinφ,
√

x2 + y2
√

x2 + y2 + z2
=

ρ sinφ

ρ
= sinφ.

Therefore, the integral becomes

∫

2π

0

∫ π

0

∫

2

0

ρ2(sinφ)2 dρ dφ dθ = 2π

∫ π

0

(sinφ)2
∫

2

0

ρ2 dρ dφ = 2π

∫ π

0

(sinφ)2
[

1

3
ρ3
]2

0

dφ =

16π

3

∫ π

0

(sinφ)2 dφ =
8π

3

∫ π

0

(1− cos 2φ) dφ =
8π

3

[

φ− 1

2
sin 2φ

]π

0

=
8π2

3
= 26.31894 . . . .

When should you consider converting a triple integral to spherical coordinates? Here are two rough
guidelines:

(a) Consider converting to spherical coordinates when the region of integration involves graphs that
“look nice” in spherical. For example, spheres and cones often produce regions that can be described by
simple inequalities in spherical coordinates.

(b) Consider converting to spherical coordinates when the integrand involves terms like x2 + y2 + z2

(= ρ2).

Example. Let R be the region defined by the inequalities x2 + y2 + z2 ≤ 4 and z ≥
√

x2 + y2. Compute
∫∫∫

R

√

x2 + y2 + z2 dx dy dz.
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x2 + y2 + z2 = 4 is a sphere of radius 2 centered at the origin, so x2 + y2 + z2 ≤ 4 refers to the interior
of the sphere.

z =
√

x2 + y2 is a cone opening at a 45◦ angle to the z-axis. Hence, z ≥
√

x2 + y2 refers to the region
lying above the cone.

Together, the inequalities specify the region inside the sphere but above the cone. (It’s shaped like an
ice-cream cone.)
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Evidently, the region “goes all the way around” the z-axis, so 0 ≤ θ ≤ 2π. To determine the inequalities
for ρ, think of a searchlight beam emanating from the origin. The beam enters the ice-cream cone at the
origin (ρ = 0) and leaves the ice-cream cone through the top of the ice-cream, which is our sphere (ρ = 2).
Hence, 0 ≤ ρ ≤ 2.

φ is the angle measured “downward” from the z-axis. Think of an umbrella held upside-down. If you
open the umbrella, through what range of angles will the ribs sweep as they pass through the region? Since

the cone makes a 45◦ (=
π

4
) angle with the z-axis, it follows that 0 ≤ φ ≤ π

4
.

The inequalities in spherical coordinates which describe the region are











0 ≤ θ ≤ 2π

0 ≤ φ ≤ π

4
0 ≤ ρ ≤ 2











Finally, since
√

x2 + y2 + z2 = ρ, the integral is

∫ ∫ ∫

R

√

x2 + y2 + z2 dx dy dz =

∫

2π

0

∫ π/4

0

∫

2

0

ρ3 sinφdρ dφ dθ = 2π

∫ π/4

0

sinφ

[

1

4
ρ4
]2

0

dφ =

8π

∫ π/4

0

sinφdφ = 8π [− cosφ]π/4
0

= 8π

(

1−
√
2

2

)

= 7.36120 . . . .
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