Spherical Coordinates

Spherical coordinates represent points in \mathbb{R}^3 using three numbers: (ρ, θ, ϕ) .

 ρ is the distance from (0, 0, 0) to the point.

 θ is "the polar coordinate θ " — that is, project the ray from the origin to the point down to a ray \vec{r} in the *x-y* plane. Measure the angle θ from the positive *x*-axis to \vec{r} in the usual way.

 ϕ is the angle from the positive z-axis to the ray from the origin to the point.

The conversion equations are

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$.

Note also that

$$\rho^2 = x^2 + y^2 + z^2.$$

However, if you're converting the coordinates of a single point from one coordinate system to another, the best thing is to draw a picture and use trigonometry.

Example. A point has rectangular coordinates $(-2, 2, 2\sqrt{6})$. Find its spherical coordinates.

First, $\theta = \frac{3\pi}{4}$. Since $r = 2\sqrt{2}$ and $z = 2\sqrt{6}$, $\rho = 4\sqrt{2}$ by Pythagoras.

$$\tan \phi = \frac{r}{z} = \frac{2\sqrt{2}}{2\sqrt{6}} = \frac{1}{\sqrt{3}}.$$

So $\phi = \frac{\pi}{6}$. The spherical coordinates are $\left(4\sqrt{2}, \frac{3\pi}{4}, \frac{\pi}{6}\right)$.

Note: If a point lies below the *x-y*-plane, ϕ will be greater than $\frac{\pi}{2}$. In that case, you can't use \sin^{-1} or \tan^{-1} "as is" to give ϕ , since those inverse trig functions only produce angles less than or equal to $\frac{\pi}{2}$.

Example. A point has cylindrical coordinates $\left(4, \frac{5\pi}{3}, -4\right)$. Find its spherical coordinates.

 $\theta = \frac{5\pi}{3}$. Since r = 4 and z = -4, $\rho = 4\sqrt{2}$ by Pythagoras. Finally, the radius lies $\frac{\pi}{4}$ below the *x-y*-plane, so $\phi = \frac{3\pi}{4}$.

The spherical coordinates are $\left(4\sqrt{2}, \frac{5\pi}{3}, \frac{3\pi}{4}\right)$.

Example. Let r be the polar coordinate radius. Express r in terms of spherical coordinates.

$$x^{2} = \rho^{2}(\sin \phi)^{2}(\cos \theta)^{2}$$
$$y^{2} = \rho^{2}(\sin \phi)^{2}(\sin \theta)^{2}$$
$$x^{2} + y^{2} = \rho^{2}(\sin \phi)^{2}$$
$$r^{2} = \rho^{2}(\sin \phi)^{2}$$
$$r = \rho \sin \phi$$

I can take $0 \le \phi \le \pi$ (so $\sin \phi \ge 0$) and $\rho \ge 0$, so I can avoid taking absolute values in the last square root step. \Box

Example. Sketch the region in space described by the following spherical coordinate inequalities:

$$\left\{\begin{array}{l} 0 \le \rho \le 1\\ 0 \le \phi \le \frac{\pi}{4} \end{array}\right\}$$

The region lies inside the sphere of radius 1 but above the cone $\phi = \frac{\pi}{4}$. Note that the latter is

The spherical conversion equations are

$$x = \rho \sin \phi \cos \theta, \quad y = \rho \sin \phi \sin \theta, \quad z = \rho \cos \phi.$$

They define a function $f : \mathbb{R}^3 \to \mathbb{R}^3$

$$f(\rho, \theta, \phi) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi).$$

The Jacobian of f is

$$\begin{vmatrix} \sin\phi\cos\theta & -\rho\sin\phi\sin\theta & \rho\cos\phi\cos\theta\\ \sin\phi\sin\theta & \rho\sin\phi\cos\theta & \rho\cos\phi\sin\theta\\ \cos\phi & 0 & -\rho\sin\phi \end{vmatrix} = -\rho^2\sin\phi.$$

The absolute value is $\rho^2 \sin \phi$. Hence, when you go from rectangular coordinates to spherical coordinates, the differentials convert by

$$dx \, dy \, dz \to \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Therefore, in order to convert a triple integral from rectangular coordinates to spherical coordinates, you should do the following:

1. Convert the limits of integration by describing the region of integration by inequalities in spherical coordinates.

2. Convert the integrand using the spherical conversion formulas:

$$x = \rho \sin \phi \cos \theta, \quad y = \rho \sin \phi \sin \theta, \quad z = \rho \cos \phi.$$

$$\rho^2 = x^2 + y^2 + z^2, \quad \frac{\sqrt{x^2 + y^2}}{z} = \tan \phi.$$

3. Convert the differentials by

$$dx \, dy \, dz \to \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Example. Let R be the interior of the sphere $x^2 + y^2 + z^2 = 4$. Compute

(

R is a sphere of radius 2 centered at the origin. The interior of the sphere is described by the inequalities

$$\left\{\begin{array}{l} 0 \le \theta \le 2\pi \\ 0 \le \phi \le \pi \\ 0 \le \rho \le 2 \end{array}\right\}$$

Moreover, since $r = \rho \sin \phi$,

$$\frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2 + z^2}} = \frac{\rho \sin \phi}{\rho} = \sin \phi.$$

Therefore, the integral becomes

$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2} \rho^{2} (\sin \phi)^{2} \, d\rho \, d\phi \, d\theta = 2\pi \int_{0}^{\pi} (\sin \phi)^{2} \int_{0}^{2} \rho^{2} \, d\rho \, d\phi = 2\pi \int_{0}^{\pi} (\sin \phi)^{2} \left[\frac{1}{3}\rho^{3}\right]_{0}^{2} \, d\phi = \frac{16\pi}{3} \int_{0}^{\pi} (\sin \phi)^{2} \, d\phi = \frac{8\pi}{3} \int_{0}^{\pi} (1 - \cos 2\phi) \, d\phi = \frac{8\pi}{3} \left[\phi - \frac{1}{2}\sin 2\phi\right]_{0}^{\pi} = \frac{8\pi^{2}}{3} = 26.31894 \dots \square$$

When should you consider converting a triple integral to spherical coordinates? Here are two rough guidelines:

(a) Consider converting to spherical coordinates when the region of integration involves graphs that "look nice" in spherical. For example, **spheres** and **cones** often produce regions that can be described by simple inequalities in spherical coordinates.

(b) Consider converting to spherical coordinates when the integrand involves terms like $x^2 + y^2 + z^2$ $(= \rho^2)$.

Example. Let R be the region defined by the inequalities $x^2 + y^2 + z^2 \leq 4$ and $z \geq \sqrt{x^2 + y^2}$. Compute

$$\iiint_R \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz.$$

 $x^2 + y^2 + z^2 = 4$ is a sphere of radius 2 centered at the origin, so $x^2 + y^2 + z^2 \le 4$ refers to the interior of the sphere.

The sphere. $z = \sqrt{x^2 + y^2}$ is a cone opening at a 45° angle to the z-axis. Hence, $z \ge \sqrt{x^2 + y^2}$ refers to the region lying above the cone.

Together, the inequalities specify the region inside the sphere but above the cone. (It's shaped like an ice-cream cone.)

Evidently, the region "goes all the way around" the z-axis, so $0 \le \theta \le 2\pi$. To determine the inequalities for ρ , think of a searchlight beam emanating from the origin. The beam *enters* the ice-cream cone at the origin ($\rho = 0$) and *leaves* the ice-cream cone through the top of the ice-cream, which is our sphere ($\rho = 2$). Hence, $0 \le \rho \le 2$.

 ϕ is the angle measured "downward" from the z-axis. Think of an umbrella held upside-down. If you open the umbrella, through what range of angles will the ribs sweep as they pass through the region? Since the cone makes a 45° $(=\frac{\pi}{4})$ angle with the z-axis, it follows that $0 \le \phi \le \frac{\pi}{4}$. The inequalities in spherical coordinates which describe the region are

$$\left\{\begin{array}{l}
0 \le \theta \le 2\pi \\
0 \le \phi \le \frac{\pi}{4} \\
0 \le \rho \le 2
\end{array}\right\}$$

Finally, since $\sqrt{x^2 + y^2 + z^2} = \rho$, the integral is

$$\int \int \int_{R} \sqrt{x^{2} + y^{2} + z^{2}} \, dx \, dy \, dz = \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2} \rho^{3} \sin \phi \, d\rho \, d\phi \, d\theta = 2\pi \int_{0}^{\pi/4} \sin \phi \left[\frac{1}{4}\rho^{4}\right]_{0}^{2} \, d\phi = 8\pi \int_{0}^{\pi/4} \sin \phi \, d\phi = 8\pi \left[-\cos \phi\right]_{0}^{\pi/4} = 8\pi \left(1 - \frac{\sqrt{2}}{2}\right) = 7.36120 \dots \square$$