Surface Area

I'll consider the problem of finding the area of part of a surface in \mathbb{R}^{3} :

$$
x=f(u, v), \quad y=g(u, v), \quad z=h(u, v)
$$

Here is a heuristic motivation for the formula.
In our discussion of the tangent plane to a surface, we found a normal vector by taking two vectors in the tangent plane and taking their cross product. We considered a small piece of the surface near the point of tangency. A small piece will be nearly flat, and will look like the parallelogram depicted below (exaggerated so you can see it):

The sides of the parallelogram are determined by the tangent vectors \vec{T}_{u} and \vec{T}_{v}, scaled up the the parameter increments $d u$ and $d v$. The area of the parallelogram should be the length of the cross product:

$$
\left\|\vec{T}_{v} d u \times \vec{T}_{v} d v\right\|=\left\|\vec{T}_{v} \times \vec{T}_{v}\right\| d u d v
$$

To get the area of the part of the surface corresponding to the region R in the $u-v$ plane, integrate to add up the areas of the parallelograms:

$$
\iint_{R}\left\|\vec{T}_{u} \times \vec{T}_{v}\right\| d u d v
$$

As a special case, consider a surface $z=f(x, y)$ given as the graph of a function. A normal vector is given by

$$
\vec{N}=\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y},-1\right)
$$

Hence,

$$
\|\vec{N}\|=\sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1}
$$

In this case, the area of the surface is

$$
\iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d x d y
$$

Example. Find the area of the part of the surface $z=2 x y-1$ which lies inside the cylinder $x^{2}+y^{2}=9$.

$$
\frac{\partial z}{\partial x}=2 y, \quad \frac{\partial z}{\partial y}=2 x, \quad \text { so } \quad\|\vec{N}\|=\sqrt{4 y^{2}+4 x^{2}+1}
$$

The region of integration is the interior of the circle $x^{2}+y^{2}=9$:

$$
\left\{\begin{aligned}
-3 & \leq x \leq 3 \\
-\sqrt{9-x^{2}} & \leq y \leq \sqrt{9-x^{2}}
\end{aligned}\right\}
$$

I'll convert to polar. The region becomes

$$
\left\{\begin{array}{c}
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq 3
\end{array}\right\}
$$

The integrand is

$$
\|\vec{N}\|=\sqrt{4 r^{2}+1}
$$

The area is

$$
\int_{0}^{3} \int_{0}^{2 \pi} \sqrt{4 r^{2}+1} r d \theta d r=2 \pi \int_{0}^{3} \sqrt{4 r^{2}+1} r d r=2 \pi\left[\frac{1}{12}\left(4 r^{2}+1\right)^{3 / 2}\right]_{0}^{3}=\frac{\pi}{6}\left(37^{3 / 2}-1\right)=117.31870 \ldots
$$

Example. Find the area of the surface

$$
\begin{gathered}
x=v \cos u, \quad y=v \sin u, \quad z=v, \quad 0 \leq u \leq 2 \pi, \quad 0 \leq v \leq 2 \\
\vec{T}_{u}=(-v \sin u, v \cos u, 0), \quad \vec{T}_{v}=(\cos u, \sin u, 1) \\
\vec{T}_{u} \times \vec{T}_{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-v \sin u & v \cos u & 0 \\
\cos u & \sin u & 1
\end{array}\right|=(v \cos u, v \sin u,-v) \\
\left\|\vec{T}_{u} \times \vec{T}_{v}\right\|=\sqrt{v^{2}(\cos u)^{2}+v^{2}(\sin u)^{2}+v^{2}}=\sqrt{2} v .
\end{gathered}
$$

The area of the surface is

$$
\int_{0}^{2} \int_{0}^{2 \pi} \sqrt{2} v d u d v=2 \pi \sqrt{2} \int_{0}^{2} v d v=2 \pi \sqrt{2}\left[\frac{1}{2} v^{2}\right]_{0}^{2}=4 \pi \sqrt{2}=17.77153 \ldots
$$

Example. (a) Find the area of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ by representing the top hemisphere as the graph of a function.
(b) Find the area of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ using the parametrization

$$
x=a \cos u \cos v, \quad y=a \cos u \sin v, \quad z=a \sin u, \quad-\frac{\pi}{2} \leq u \leq \frac{\pi}{2}, \quad 0 \leq v \leq 2 \pi
$$

(a) The top hemisphere is

$$
z=\sqrt{a^{2}-x^{2}-y^{2}}
$$

Thus,

$$
\vec{N}=\left(-\frac{x}{\sqrt{a^{2}-x^{2}-y^{2}}},-\frac{y}{\sqrt{a^{2}-x^{2}-y^{2}}},-1\right)
$$

$$
\|\vec{N}\|=\left(\frac{x^{2}}{a^{2}-x^{2}-y^{2}}+\frac{y^{2}}{a^{2}-x^{2}-y^{2}}+1\right)^{1 / 2}=\left(\frac{a^{2}}{a^{2}-x^{2}-y^{2}}\right)^{1 / 2}=\frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}}
$$

The region of integration is the interior of the circle $x^{2}+y^{2}=a^{2}$:

$$
\begin{aligned}
-a & \leq x \leq a \\
-\sqrt{a^{2}-x^{2}} & \leq y \leq \sqrt{a^{2}-x^{2}}
\end{aligned}
$$

I'll convert to polar. The region is

$$
\begin{gathered}
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq a
\end{gathered}
$$

Likewise,

$$
\|\vec{N}\|=\frac{a}{\sqrt{a^{2}-r^{2}}}
$$

I need to double the area for the top hemisphere to get the area of the whole sphere:

$$
2 \int_{0}^{a} \int_{0}^{2 \pi} \frac{a}{\sqrt{a^{2}-r^{2}}} r d \theta d r=4 \pi \int_{0}^{a} \frac{a r}{\sqrt{a^{2}-r^{2}}} d r=4 \pi a\left[-\sqrt{a^{2}-r^{2}}\right]_{0}^{a}=4 \pi a^{2}
$$

(b)

$$
\begin{gathered}
\vec{T}_{u}=(-a \sin u \cos v,-a \sin u \sin v, a \cos u), \quad \vec{T}_{v}=(-a \cos u \sin v, a \cos u \cos v, 0) \\
\vec{T}_{u} \times \vec{T}_{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-a \sin u \cos v & -a \sin u \sin v & a \cos u \\
-a \cos u \sin v & a \cos u \cos v & 0
\end{array}\right|=\left(-a^{2}(\cos u)^{2} \cos v,-a^{2}(\cos u)^{2} \sin v,-a^{2} \sin u \cos u\right), \\
\left\|\vec{T}_{u} \times \vec{T}_{v}\right\|=\sqrt{a^{4}(\cos u)^{4}(\cos v)^{2}+a^{4}(\cos u)^{4}(\sin v)^{2}+a^{4}(\sin u)^{2}(\cos u)^{2}}=a^{2} \cos u
\end{gathered}
$$

The area is

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \pi} a^{2} \cos u d v d u=2 \pi a^{2} \int_{-\pi / 2}^{\pi / 2} \cos u d u=2 \pi a^{2}[\sin u]_{-\pi / 2}^{\pi / 2}=4 \pi a^{2}
$$

