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Surface Integrals

If S is a surface and f(x, y, z) is a function, the scalar surface integral of f over S is

∫∫

S

f dS.

Imagine placing a grid on the surface. dS represents the area of a small parallelogram in the grid. At
a point (x, y, z), build a “box” on the grid at (x, y, z) whose height is f(x, y, z). The volume of the box will
be product of the height (f(x, y, z)) and the parallelogram area (dS), i.e. f(x, y, z)dS.

f(x,y,z) dS

Under this heuristic interpretation, the scalar surface integral represents the total volume of all the
“boxes” built in this way on the surface.

It is fairly clear how to deal with f(x, y, z), but what about dS? Suppose the surface is parametrized:

(x, y, z) = Φ(u, v).

That is, each of x, y, and z is expressed in terms of parameters u and v. Fix v and vary u. This gives
a curve on the surface, whose tangent vector I’ll denote by ~Tu. Likewise, fixing u and varying v produces a
curve on the surface whose tangent vector I’ll denote by ~Tv.

A small part of the surface grid pictured above can be thought of as a parallelogram whose sides are
given by the vectors ~Tu du and ~Tv dv.

T duu

T dvv

~Tu gives the “rate of change” of S with respect to u; multiplying by a small change du in u gives the
approximate change ~Tu du in S. Likewise, ~Tv dv gives the change in S produced by a small change in v.

The area of the little parallelogram is the length of the cross product of its sides:

dS = ‖~Tu × ~Tv‖ du dv.

~Tu × ~Tv is the normal vector to the surface, since each factor is tangent to the surface.

1



Thus, to compute a scalar surface integral, use

∫∫

S

f dS =

∫∫

D

f (x(u, v), y(u, v), z(u, v)) ‖~Tu × ~Tv‖ du dv.

The region D which gives the bounds for the double integral is given by the ranges for the parameters
u and v.

“f (x(u, v), y(u, v), z(u, v))” means that you should use the parametric equations for the surface to
convert f from x, y, and z to u and v.

You can compute the normal vector using

~Tu × ~Tv =

∣

∣

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
∂x

∂u

∂y

∂u

∂z

∂u
∂x

∂v

∂y

∂v

∂z

∂v

∣

∣

∣

∣

∣

∣

∣

∣

.

If the surface is given as the graph of a function z = f(x, y), you’ll integrate over the projection D of
the surface into the x-y plane.

You will probably do the integral using x and y as the variables, but you might want to convert to polar
coordinates if the double integral warrants it.

Finally, a normal is given by

~N = ±
(

−∂z

∂x
,−∂z

∂y
, 1

)

.

Hence,

‖ ~N‖ =

√

(

∂z

∂x

)2

+

(

∂z

∂y

)2

+ 1.

Example. Let S be the part of the plane z = 2x+ 5y + 1 lying above the square

{

0 ≤ x ≤ 1
0 ≤ y ≤ 1

}

Let f(x, y, z) = 3x+ y − z. Compute

∫∫

S

f dS.

The normal vector to the plane is

~N = (−2,−5, 1), so ‖ ~N‖ =
√
4 + 25 + 1 =

√
30.

I have
f(x, y, z) = 3x+ y − z = 3x+ y − (2x+ 5y + 1) = x− 4y − 1.

Hence,

∫∫

S

f dS =

∫

1

0

∫

1

0

(x− 4y − 1)
√
30 dx dy =

√
30

∫

1

0

[

1

2
x2 − 4xy − x

]1

0

dy =
√
30

∫

1

0

(

−1

2
− 4y

)

dy =

√
30

[

−1

2
y − 2y2

]1

0

= −5
√
30

2
= −13.69306 . . . .
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If f represents the density of a sheet of material having the form of the surface S, then the surface

integral

∫∫

S

f dS gives the mass of the sheet.

Example. A sheet of metal of varying density has the form of the surface

x = u cos v, y = u sin v, z = u3, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

Suppose the density is δ(x, y, z) = x2 + y2. Find the mass of the sheet of metal.

~Tu = (cos v, sin v, 3u2), ~Tv = (−u sin v, u cos v, 0).

~Tu × ~Tv =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
cos v sin v 3u2

−u sin v u cos v 0

∣

∣

∣

∣

∣

∣

= (−3u3 cos v,−3u3 sin v, u).

‖~Tu × ~Tv‖ =
√

9u6(cos v)2 + 9u6(sin v)2 + u2 =
√

9u6 + u2 = u
√

9u4 + 1.

δ(x, y, z) = x2 + y2 = u2(cos v)2 + u2(sin v)2 = u2.

Hence, the mass is

∫

2π

0

∫

1

0

u2 · u
√

9u4 + 1 du dv = 2π

∫

1

0

u3
√

9u4 + 1 du = 2π

∫

10

1

u3
√
w · dw

36u3
=

[

w = 9u4 + 1, dw = 36u3 du, du =
dw

36u3
; u = 0, w = 1;u = 1, w = 10

]

π

18

∫

10

1

√
w dw =

π

18

[

2

3
w3/2

]10

1

=
π

27

(

103/2 − 1
)

= 3.56312 . . . .

Now consider a vector field ~F in space, and let S be a surface. If you think of F as the velocity field of a
fluid or gas and the surface S as a membrane, it is natural to ask “how much” fluid or gas passes through the
membrane per unit time. This rate is called the flux of ~F through S, and is given by the vector surface

integral
∫∫

S

~F · ~dS =

∫∫

D

~F · (~Tu × ~Tv) du dv.

(I’m assuming that the surface is parametrized by (x, y, z) = Φ(u, v).)
If the surface is given as the graph of a function z = f(x, y), a normal is given by

~N = ±
(

−∂z

∂x
,−∂z

∂y
, 1

)

.

You must decide whether to use ~N or − ~N based on the wording of the problem.

Example. Let S be the part of the surface z = x2 + y2 lying below the plane z = 4. Find the flux of
~F = (x, y,−5z) upward through S.

~N =

(

−∂z

∂x
,−∂z

∂y
, 1

)

= (−2x,−2y, 1).
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Note that this normal vector has positive z-component, which is correct for computing the flux upward

through S.
Then

~F = (x, y,−5z) = (x, y,−5(x2 + y2)).

So
~F · ~N = −2x2 − 2y2 − 5(x2 + y2) = −7(x2 + y2).

I’ll do the double integral in polar.
z = x2 + y2 intersects z = 4 in x2 + y2 = 4, so the projection into the x-y-plane is

{

0 ≤ θ ≤ 2π
0 ≤ r ≤ 2

}

And
~F · ~N = −7r2.

So the flux is

∫

2π

0

∫

2

0

−7r2 · r dr dθ = −14π

∫

2

0

r3 dr = −14π

[

1

4
r4
]2

0

= −56π = −175.92918 . . . .

Example. Compute the flux of ~F = (x, y,−z) upward through the surface

x = u+ 2v, y = 2u+ v, z = 3uv, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

~Tu = (1, 2, 3v) and ~Tv = (2, 1, 3u).

A normal vector is

~Tu × ~Tv =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
1 2 3v
2 1 3u

∣

∣

∣

∣

∣

∣

= (6u− 3v,−3u+ 6v,−3).

However, I want to compute the flux upward through the surface, and this normal has negative z-
component. So I use the negative of this normal vector, which is

−(~Tu × ~Tv) = (−6u+ 3v, 3u− 6v, 3).

Next,
~F = (u+ 2v, 2u+ v,−3uv).

So
~F · [−(~Tu × ~Tv)] = (−6u2 − 9uv + 6v2) + (6u2 − 9uv − 6v2)− 9uv = −27uv.

The flux is
∫

1

0

∫

1

0

−27uv du dv = −27

∫

1

0

[

1

2
u2v

]1

0

dv = −27

2

∫

1

0

v dv =

−27

2

[

1

2
v2
]1

0

= −27

4
.

Example. The elliptic hyperboloid x2 − y2 + 4z2 = 1 may be parametrized by

x = secu cos v, y = tanu, z =
1

2
secu sin v.
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Compute the flux of the radial vector field ~F = (x, y, z) outward through the part of the surface in
determined by the parameter ranges

{

−π

4
≤ u ≤ π

4
0 ≤ v ≤ 2π

}

The normal is

~Tu × ~Tv =

∣

∣

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

secu tanu cos v (secu)2
1

2
secu tanu sin v

− secu sin v 0
1

2
secu cos v

∣

∣

∣

∣

∣

∣

∣

∣

=

(

1

2
(secu)3 cos v,−1

2
(secu)2 tanu, (secu)3 sin v

)

.

For the given ranges of u and v, the x and z components of the normal are positive, so the normal points
out of the hyperboloid. (If the normal had turned out to point inward, I’d have simply multiplied it by −1
to get the outward normal.)

Next, write the field in terms of u and v:

~F =

(

secu cos v, tanu,
1

2
secu sin v

)

.

Therefore,

~F · (~Tu × ~Tv) =
1

2
(secu)2.

Hence, the flux is

∫ ∫

S

~F · ~dS =

∫

2π

0

∫ π/4

−π/4

1

2
(secu)2 du dv = π [tanu]− π/4

π/4
= 2π = 6.28319.

Example. Find the flux of ~F = (2x, 0, z) out of the part of the cylinder z =
√
1− x2 lying above the region

{

−1 ≤ x ≤ 1
0 ≤ y ≤ 1

}
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The normal is
(

−∂z

∂x
,−∂z

∂y
, 1

)

=

(

x√
1− x2

, 0, 1

)

.

This cylinder is an “x-z” cylinder, with the y-axis as its axis. So the inward normal will have negative

x and z components, while the outward normal will have positive x and z components. The normal above
has positive x and z components, so it’s the right one.

Next,

~F · ~N = (2x, 0, z) ·
(

x√
1− x2

, 0, 1

)

=
1 + x2

√
1− x2

.

Hence, the flux is

∫∫

S

~F · ~dS =

∫

1

0

∫

1

−1

1 + x2

√
1− x2

dx dy =
3π

2
= 4.71238 . . . .

In the next problem, the vector surface integral is given in a form like the differential form of a line
integral.

Example. Let S be the part of the plane x+ y + z = 1 lying in the first quadrant.
Compute

∫∫

S

xz dx dy + xy dy dz + yz dx dz.

-y

1 1

1

z

x
y

y=1-x

I will do each of the terms separately. First, if Rxy is the projection of the surface into the x-y plane,

∫∫

S

xz dx dy =

∫∫

Rxy

xz dx dy.
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(I project into the x-y plane because the differentials are dx dy.) Now z = 1− x− y, and the projection
is

{

0 ≤ x ≤ 1
0 ≤ y ≤ 1− x

}

So
∫∫

Rxy

xz dx dy =

∫

1

0

∫

1−x

0

x(1− x− y) dy dx =

∫

1

0

x

[

y − xy − 1

2
y2
]1−x

0

dx =

∫

1

0

x

(

(1− x)− x(1− x)− 1

2
(1− x)2

)

dx =

∫

1

0

(

1

2
x3 − x2 +

1

2
x

)

dx =

[

1

8
x4 − 1

3
x3 +

1

4
x2

]1

0

=
1

24
.

Similarly, if Ryz and Rxz are the projections into the y-z and x-z planes, respectively, then

∫∫

S

xy dy dz =

∫

1

0

∫

1−y

0

(1− y − z)y dz dy =
1

24

∫∫

S

yz dx dz =

∫

1

0

∫

1−x

0

(1− x− z)z dz dx =
1

24

The total is
1

24
+

1

24
+

1

24
=

1

8
.
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