The Tangent Plane to a Surface

The derivative of a function of one variable gives the slope of the tangent line to the graph. The partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of a function of two variables $z=f(x, y)$ determine the tangent plane to the graph.

The graph of $z=f(x, y)$ is a surface in 3 dimensions. Suppose we're trying to find the equation of the tangent plane at $(a, b, f(a, b))$.

To write down the equation of a plane, we need a point on the plane and a vector perpendicular to the plane. We have a point on the plane, namely $(a, b, f(a, b))$.

To find a vector perpendicular to the plane, we find two vectors in the plane and take their cross product. To do this, look at a small piece of the surface near the point of tangency. A small piece will be nearly flat, and will look like the parallelogram depicted below:

The vectors \vec{a} and \vec{b} which are the sides of the parallelogram are tangent to the surface at the point of tangency. Consider \vec{a}. It runs in the x-direction. A small change $d x$ in x produces a change in z - the amount the vector \vec{a} "rises".

How much does z change due to a change $d x$ in x ? The rate of change of z with respect to x is $\frac{\partial z}{\partial x}$, so the change in z produced by changing x by $d x$ is just $\frac{\partial z}{\partial x} d x$.

Now \vec{a} is a vector with x-component $d x$, no y-component, and z-component $\frac{\partial z}{\partial x} d x$. Therefore,

$$
\vec{a}=\left(d x, 0, \frac{\partial z}{\partial x} d x\right)
$$

A similar argument shows that

$$
\vec{b}=\left(0, d y, \frac{\partial z}{\partial y} d y\right)
$$

The cross product is

$$
\vec{a} \times \vec{b}=\left(-\frac{\partial z}{\partial x} d x d y,-\frac{\partial z}{\partial y} d x d y, d x d y\right)=\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y}, 1\right) d x d y
$$

I need any vector perpendicular to the surface. Since vectors which are multiples are parallel, I may use this vector as the perpendicular vector to the surface:

$$
\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y}, 1\right) .
$$

This is often referred to as the normal vector to the surface and denoted by \vec{N}.
The tangent plane at $(a, b, f(a, b))$ is

$$
\left(-\left.\frac{\partial f}{\partial x}\right|_{(a, b)}\right)(x-a)+\left(-\left.\frac{\partial f}{\partial y}\right|_{(a, b)}\right)(y-b)+(z-f(a, b))=0
$$

The normal line to the surface at $(a, b, f(a, b))$ is the line which passes through $(a, b, f(a, b))$ and is perpendicular to the tangent plane. The normal line is parallel to the normal vector $\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y}, 1\right)$. Therefore, the parametric equations of the normal line are

$$
x-a=-\left.\frac{\partial f}{\partial x}\right|_{(a, b)} \cdot t, \quad y-b=-\left.\frac{\partial f}{\partial y}\right|_{(a, b)} \cdot t, \quad z-f(a, b)=t
$$

Example. Find the equation of the tangent plane and the parametric equations of the normal line to $z=\frac{2 x}{y}-x^{2}$ at $(1,1,1)$.

The normal vector to the surface is

$$
\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y}, 1\right)=\left(-\frac{2}{y}+2 x, \frac{2 x}{y^{2}}, 1\right) .
$$

Plugging in $x=1$ and $y=1$ gives $(0,2,1)$.
The tangent plane is

$$
0 \cdot(x-1)+2 \cdot(y-1)+1 \cdot(z-1)=0, \quad \text { or } \quad 2 y+z=3
$$

The normal line is

$$
x-1=0, \quad y-1=2 t, \quad z-1=t
$$

Example. Use a tangent plane to approximate $(1.99)^{2}-\frac{1.99}{1.01}$.
The idea is to think of this as the result of plugging numbers into a function $z=f(x, y)$. What is f ? Well, the form of the expression suggests that 1.99 corresponds to one of the variables and 1.01 to the other. It's natural to use the function

$$
z=f(x, y)=x^{2}-\frac{x}{y}
$$

I want to approximate $f(1.99,1.01)$. The point $(1.99,1.01)$ is close to $(2,1)$, so I'll use the tangent plane at $(2,1)$ to approximate f.

The normal vector is

$$
\left(-2 x+\frac{1}{y},-\frac{x}{y^{2}}, 1\right)
$$

Plug in $x=2, y=1$. This gives $(-3,-2,1)$.
When $x=2$ and $y=1, z=2$. The point of tangency is $(2,1,2)$.
The tangent plane is

$$
-3(x-2)-2(y-1)+(z-2)=0, \quad \text { or } \quad z=3 x+2 y-6
$$

Now set $x=1.99, y=1.01$. This gives $z \approx 1.99$. (The actual value is 1.989803 .)
Here is an equivalent way to think of things that is similar to the "approximation by differentials" technique you may have seen in first-year calculus. The change Δf in f produced by small changes in $d x$ in x and $d y$ in y is approximated by

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

Thus,

$$
f(x+d x, y+d y) \approx f(x, y)+d f
$$

Here (x, y) denotes the "nice" point $((2,1)$ in the last example) and $(x+d x, y+d y)$ denotes the "ugly" point $((1.99,1.01)$ in the last example $)$.

If you redo the example using this differential approach, you'd have

$$
f(1.99,1.01) \approx f(2,1)+\left(\frac{\partial f}{\partial x}\right)(d x)+\left(\frac{\partial f}{\partial y}\right)(d y)=2+(3)(-0.01)+(2)(0.01)=1.99
$$

Suppose a surface is given parametrically:

$$
x=f(u, v), \quad y=g(u, v), \quad z=h(u, v)
$$

Consider the vectors

$$
\vec{T}_{u}=\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \quad \text { and } \quad \vec{T}_{v}=\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
$$

These vectors are tangent to the curves in the surface determined by letting one of u or v vary and holding the other constant. For example, if u varies and $v=c$ is constant, I get the curve

$$
x=f(u, c), \quad y=g(u, c), \quad z=h(u, c)
$$

The velocity vector for this curve is \vec{T}_{u}.
Likewise, consider the curve obtained by setting u to a constant:

$$
x=f(c, v), \quad y=g(c, v), \quad z=h(c, v)
$$

The velocity vector for this curve is \vec{T}_{v}.

The cross product of \vec{T}_{u} and \vec{T}_{v} is a normal vector to the surface:

$$
N=\vec{T}_{u} \times \vec{T}_{v}
$$

Example. Find the equation of the tangent plane and the parametric equations for the normal line to

$$
x=u^{2}-v^{2}, \quad y=u v, \quad z=u^{2}+v^{2} \quad \text { at } \quad(u, v)=(2,1)
$$

First, the point of tangency is obtained by plugging $u=2$ and $v=1$ into x, y, and z. I get $x=3$, $y=2$, and $z=5$. The point is $(3,2,5)$.

Next,

$$
\vec{T}_{u}=(2 u, v, 2 u) \quad \text { and } \quad \vec{T}_{v}=(-2 v, u, 2 v)
$$

When $u=2$ and $v=1$,

$$
\vec{T}_{u}=(4,1,4) \quad \text { and } \quad \vec{T}_{v}=(-2,2,2)
$$

The normal vector is

$$
\vec{T}_{u} \times \vec{T}_{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
4 & 1 & 4 \\
-2 & 2 & 2
\end{array}\right|=(-6,-16,10)
$$

The tangent plane is

$$
-6(x-3)-16(y-2)+10(z-5)=0
$$

The normal line is

$$
x-3=-6 t, \quad y-2=-16 t, \quad z-5=10 t . \quad \square
$$

