
Vector Functions

A function f : R → R
n is called a vector function in R

n. We’ll focus on vector functions in the plane
R

2 and space R
3, but everything goes over to R

n without any difficulty.

Example. Find f(0) and f(2) for f : R → R
3 given by

f(t) = (t2 + 6, sinπt, ln(t+ 2)).

f(0) = (6, 0, ln 2) and f(2) = (10, 0, ln 4).

It is no accident that the function in the last example looked like a parametric curve, because that’s
what it is. A vector function in R

n is a curve in R
n.

Our main concern is the calculus of vector functions, and the basic idea is that we do everything
component-by-component, and so many of the things you learned in single-variable calculus carry over with
just minor adjustments.

Definition. Suppose f : R → R
n is a vector function, c ∈ R, and L ∈ R

n. Then lim
t→c

f(t) = L means: For

every ǫ > 0, there is a δ, such that

δ > |t− c| > 0 implies ǫ > ‖f(t)− L‖.

(“‖f(t)− L‖” means the length of f(t)− f(c), regarded as a vector in R
n.)

Proposition. Suppose f : R → R
n has components

f(t) = (f1(t), f2(t), . . . fn(t)).

Then
lim
t→c

f(t) = (lim
t→c

f1(t), lim
t→c

f2(t), . . . lim
t→c

fn(t)).

This means that the limit on the left exists if and only if all the component limits on the right exist,
and in that case the two sides are equal.

In other words, you take the limit of a vector function by taking the limit of each component. All of
the usual rules for computing limits work, one component at a time.

Example. Find the value of lim
t→1

(

t2 + 3t− 4

t− 1
, cos

πt

2
, 4et−1

)

if it exists.

The component functions of f(t) =

(

t2 + 3t− 4

t− 1
, cos

πt

2
, 4et−1

)

are f1(t) =
t2 + 3t− 4

t− 1
, f2(t) = cos

πt

2
,

and f3(t) = 4et−1. You can see that the component functions are ordinary one-variable functions of the kind
you see in a first-term calculus course.

Note that

lim
t→1

t2 + 3t− 4

t− 1
= lim

t→1

(t+ 4)(t− 1)

t− 1
= lim

t→1

(t+ 4) = 5.

So

lim
t→1

(

t2 + 3t− 4

t− 1
, cos

πt

2
, 4et−1

)

= (5, 0, 4).
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Definition. Let f : R → R
n be a vector function in R

n, and let c ∈ R. Then f is continuous at c if
lim
t→c

f(t) = f(c).

Proposition. Suppose f : R → R
n has components

f(t) = (f1(t), f2(t), . . . fn(t)).

Then f is continuous at c if and only if f1, f2, . . . fn are continuous at c, considered as functions R → R.

If that looks a bit technical, don’t worry. The meaning is that a vector function is continuous at a point
if its component functions are.

Example. Define f : R → R
2 by

f(t) =

{

(t, t2 + 3) if t 6= 0
(0, 2) if t = 0

Prove or disprove: f is continuous at t = 0.

lim
t→0

f(t) = lim
t→0

(t, t2 + 3) = (0, 3), but f(0) = (0, 2).

Since lim
t→0

f(t) 6= f(0), the function is not continuous at t = 0.

Definition. Let f : R → R
n be a vector function in R

n. The derivative of f is the vector function
f ′ : R → R

n given by
f ′(t) = (f ′

1
(t), f ′

2
(t), . . . f ′

n
(t)).

I’ll often write
df(t)

dt
or

df

dt
for f ′(t).

Proposition. Let f, g : R → R
n be vector functions in R

n, and let c ∈ R. Then:

(a) If c = (c1, c2, . . . cn) is a constant, then
dc

dt
= ~0.

(b)
d

dt
[f(t) + g(t)] =

df

dt
+

dg

dt
.

(c)
d

dt
(c · f(t)) = c ·

df

dt
.

(d) (Dot product)
d

dt
(f(t) · (g(t)) =

df

dt
· g(t) + f(t) ·

dg

dt
.

Note: In (d), all the products are dot products.

(e) (Cross product) Suppose n = 3. Then

d

dt
(f(t)× g(t)) =

df

dt
× g(t) + f(t)×

dg

dt
.

Proof. The proofs amount to proving the results component-wise. For example, consider (d). Suppose

f(t) = (f1(t), f2(t), . . . fn(t)) and g(t) = (g1(t), g2(t), . . . gn(t)).

Then
f(t) · g(t) = f1(t)g1(t) + f2(t)g2(t) + · · ·+ fn(t)gn(t).

2



Using the Product Rule for functions of one variable, I have

d

dt
f(t) · g(t) =

d

dt
[f1(t)g1(t) + f2(t)g2(t) + · · ·+ fn(t)gn(t)]

= [f ′

1
(t)g1(t) + f1(t)g

′

1
(t)] + [f ′

2
(t)g2(t) + f2(t)g

′

2
(t)] + · · ·+ [f ′

n
(t)gn(t) + fn(t)g

′

n
(t)]

= [f ′

1
(t)g1(t) + f ′

2
(t)g2(t) + · · ·+ f ′

n
(t)gn(t)] + [f1(t)g

′

1
(t) + f2(t)g

′

2
(t) + · · ·+ fn(t)g

′

n
(t)]

= (f ′

1
(t), f ′

2
(t), . . . f ′

n
(t)) · (g1(t), g2(t), . . . gn(t)) + (f1(t), f2(t), . . . fn(t)) · (g

′

1
(t), g′

2
(t), . . . g′

n
(t))

=
df

dt
· g(t) + f(t) ·

dg

dt

The other results are proved in similar fashion.

Example. Let

f(t) = (t2 + 3t+ 1, 17, sin 4t).

Compute f ′(t) and f ′(1).

f ′(t) = (2t+ 3, 0, 4 cos 4t) and f ′(1) = (5, 0, 4 cos 4).

Thinking of f : R → R
n as a curve, f ′(t) is a tangent vector to the curve.

f(t)

f'(t)

Example. Find parametric equations for the tangent line to

f(t) = (t3 + 5, (t+ 1)2, 7t+ 1) at t = 1.

The point of tangency is f(1) = (6, 4, 8). Now

f ′(t) = (3t2, 2(t+ 1), 7) so f ′(1) = (3, 4, 7).

Thus, (3, 4, 7) is a vector tangent to the curve, so it’s parallel to the tangent line to the curve. The
tangent line is

x− 6 = 3t, y − 4 = 4t, z − 8 = 7t.

You can integrate vector functions component-by-component.

Definition. Suppose f : R → R
n has components

f(t) = (f1(t), f2(t), . . . fn(t)).
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Then
∫

f(t) dt =

(
∫

f1(t) dt,

∫

f2(t) dt, . . .

∫

fn(t) dt

)

.

A similar definition holds for definite integrals.

Proposition. Let f, g : R → R
n be vector functions in R

n, and let c ∈ R. Then:

(a)

∫

[f(t) + g(t)] dt =

∫

f(t) dt+

∫

g(t) dt.

(b)

∫

cf(t) dt = c

∫

f(t) dt.

Example. Compute the integral

∫

(4− (sec t)2, e6t, 12t2 − 8t+ 5) dt.

∫

(4− (sec t)2, e6t, 12t2 − 8t+ 5) dt =

(

4t− tan t,
1

6
e6t, 4t3 − 4t2 + 5t

)

+ (c1, c2, c3).

Example. Compute the integral

∫

1

0

(

6t2 + 5,
3t+ 1

,
6 cos 3t

)

dt.

∫

1

0

(

6t2 + 5,
3t+ 1

,
6 cos 3t

)

dt =

[(

2t3 + 5t,
1

3
ln |3t+ 1|, 2 sin 3t

)]1

0

=

(

7,
1

3
ln 4, 2 sin 3

)

.
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