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If R is a region in the x-y plane and z = f(z,y)
and below the graph of the function is given by
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The picture gives a heuristic justification for this:

mes

is a function, the volume of the solid lying above R

y) dx dy.

f(x,y)

The region R is partitioned into boxes, each dz by dy. Above a box we construct a rectangular paral-
lelepiped (i.e. a “tall box”) up to the surface. The height of the box is z = f(z,y), the height of the surface.
The volume of a “tall box” is f(z,y)dx dy. The double integral “adds up” the volumes of the “tall boxes”

over R to get the total volume.

A careful justification would use Riemann sums for the double integral.
This is really a signed volume: If the function is zero or negative on R, the integral may not represent

the physical volume.

Example. Find the volume of the solid lying below the graph of z = 24x2y? and above the following region

in the z-y-plane:

The region is

The volume is
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Example. Find the volume of the solid lying below the graph of z = 18xy and above the following region

in the x-y-plane:
y

First, I’ll find the equation of the line, which has z-intercept 3 and y-intercept 2. Suppose the line is
ax + by = c¢. The z-intercept is (3,0), so plugging this in, I get
c

3a=c¢, so azg.

The y-intercept is (0, 2), so plugging this in I get

c
2b = b= -.
¢, SO 5

Thus,
§x+gy*c
20 + 3y =
1
=_-(6-2
y=5(6-22)

The triangular region is

The volume is
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Example. Find the volume of the solid lying below the graph of z = 3zy? and above the following region

in the z-y-plane:
0<z<1
R{0<y<1—w2}
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If f(z,y) > g(x,y) for (z,y) in a region R, the volume bounded above by the graph of f and bounded
below by the graph of g, and lying inside the cylinder determined by R, is given by

//R[f(x’ y) — g(z,y)] dz dy.

Example. Find the volume of the solid bounded above by z = 4y + 1 and bounded below by z = —1 — 2z,
and lying inside the triangular cylinder
0<y<l1
{ 0<zx<1l—y } )

r=1-y

The volume is
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